1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
|
use crate::StandardDecodeError;
impl From<ReadError> for StandardDecodeError {
fn from(_: ReadError) -> StandardDecodeError {
StandardDecodeError::ExhaustedInput
}
}
pub enum ReadError {
ExhaustedInput,
IOError(&'static str),
}
/// a trait defining how `Item`-sized words are read at `Address`-positioned offsets into some
/// stream of data. for *most* uses, [`yaxpeax_arch::U8Reader`] probably is sufficient. when
/// reading from data sources that aren't `&[u8]`, `Address` isn't a multiple of `u8`, or `Item`
/// isn't a multiple of 8 bits, `U8Reader` won't be sufficient.
pub trait Reader<Address, Item> {
fn next(&mut self) -> Result<Item, ReadError>;
/// read `buf`-many items from this reader in bulk. if `Reader` cannot read `buf`-many items,
/// return `ReadError::ExhaustedInput`.
fn next_n(&mut self, buf: &mut [Item]) -> Result<(), ReadError>;
/// mark the current position as where to measure `offset` against.
fn mark(&mut self);
/// the difference, in `Address`, between the current `Reader` position and its last `mark`.
/// when created, a `Reader`'s initial position is `mark`ed, so creating a `Reader` and
/// immediately calling `offset()` must return `Address::zero()`.
fn offset(&mut self) -> Address;
/// the difference, in `Address`, between the current `Reader` position and the initial offset
/// when constructed.
fn total_offset(&mut self) -> Address;
}
/// a trait defining how to build a `Reader<Address, Item>` from some data source (`Self`).
/// definitions of `ReaderBuilder` are provided for `U8Reader` on `Address` and `Word` types that
/// `yaxpeax_arch` provides - external decoder implementations should also provide `ReaderBuilder`
/// impls if they use custom `Reader` types.
pub trait ReaderBuilder<Address: crate::AddressBase, Item> where Self: Sized {
type Result: Reader<Address, Item>;
/// construct a reader from `data` beginning at `addr` from its beginning.
fn read_at(data: Self, addr: Address) -> Self::Result;
/// construct a reader from `data` beginning at the start of `data`.
fn read_from(data: Self) -> Self::Result {
Self::read_at(data, Address::zero())
}
}
/// a struct for `Reader` impls that can operate on units of `u8`.
pub struct U8Reader<'a> {
start: *const u8,
data: *const u8,
end: *const u8,
mark: *const u8,
_lifetime: core::marker::PhantomData<&'a [u8]>,
}
impl<'a> U8Reader<'a> {
pub fn new(data: &'a [u8]) -> U8Reader<'a> {
// WHY: either on <64b systems we panic on `data.len() > isize::MAX`, or we compute end
// without `offset` (which would be UB for such huge slices)
#[cfg(not(target_pointer_width = "64"))]
let end = data.as_ptr().wrapping_add(data.len());
// SAFETY: the slice was valid, so data + data.len() does not overflow. at the moment,
// there aren't 64-bit systems with 63 bits of virtual address space, so it's not possible
// to have a slice length larger than 64-bit isize::MAX.
#[cfg(target_pointer_width = "64")]
let end = unsafe { data.as_ptr().offset(data.len() as isize) };
U8Reader {
start: data.as_ptr(),
data: data.as_ptr(),
end,
mark: data.as_ptr(),
_lifetime: core::marker::PhantomData,
}
}
}
/* a `std::io::Read`-friendly `Reader` would take some thought. this was an old impl, and now would
* require something like
* ```
* pub struct IoReader<'io, T: std::io::Read> {
* io: &io mut T,
* count: u64,
* start: u64,
* }
* ```
*/
/*
#[cfg(feature = "std")]
impl<T: std::io::Read> Reader<u8> for T {
fn next(&mut self) -> Result<u8, ReadError> {
let mut buf = [0u8];
match self.read(&mut buf) {
Ok(0) => { Err(ReadError::ExhaustedInput) }
Ok(1) => { Ok(buf[0]) }
Err(_) => {
Err(ReadError::IOError("error"))
}
}
}
}
*/
macro_rules! word_wrapper {
($name:ident, $underlying:ident) => {
#[derive(Debug, PartialEq, Eq, Hash, PartialOrd, Ord, Copy, Clone)]
pub struct $name(pub $underlying);
impl core::fmt::Display for $name {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "{}", self.0)
}
}
}
}
word_wrapper!(U16le, u16);
word_wrapper!(U16be, u16);
word_wrapper!(U32le, u32);
word_wrapper!(U32be, u32);
word_wrapper!(U64le, u64);
word_wrapper!(U64be, u64);
macro_rules! u8reader_reader_impl {
($addr_size:ident, $word:ident, $word_from_slice:expr, $words_from_slice:expr) => {
impl Reader<$addr_size, $word> for U8Reader<'_> {
#[inline]
fn next(&mut self) -> Result<$word, ReadError> {
let data_size = self.end as usize - self.data as usize;
if core::mem::size_of::<$word>() > data_size {
return Err(ReadError::ExhaustedInput);
}
// `word_from_slice` knows that we have bounds-checked that `word`-many bytes are
// available.
let word = $word_from_slice(self.data);
unsafe {
self.data = self.data.offset(core::mem::size_of::<$word>() as isize);
}
Ok(word)
}
#[inline]
fn next_n(&mut self, buf: &mut [$word]) -> Result<(), ReadError> {
let data_size = self.end as usize - self.data as usize;
let words_size_bytes = buf.len() * core::mem::size_of::<$word>();
if words_size_bytes > data_size {
return Err(ReadError::ExhaustedInput);
}
// `word_from_slice` knows that we have bounds-checked that `word`-many bytes are
// available.
$words_from_slice(self.data, buf);
unsafe {
self.data = self.data.offset(words_size_bytes as isize);
}
Ok(())
}
#[inline]
fn mark(&mut self) {
self.mark = self.data;
}
#[inline]
fn offset(&mut self) -> $addr_size {
(self.data as usize - self.mark as usize) as $addr_size
}
#[inline]
fn total_offset(&mut self) -> $addr_size {
(self.data as usize - self.start as usize) as $addr_size
}
}
impl<'data> ReaderBuilder<$addr_size, $word> for &'data [u8] {
type Result = U8Reader<'data>;
fn read_at(data: Self, addr: $addr_size) -> Self::Result {
U8Reader::new(&data[(addr as usize)..])
}
}
}
}
macro_rules! u8reader_each_addr_size {
($word:ident, $word_from_slice:expr, $words_from_slice:expr) => {
u8reader_reader_impl!(u64, $word, $word_from_slice, $words_from_slice);
u8reader_reader_impl!(u32, $word, $word_from_slice, $words_from_slice);
u8reader_reader_impl!(u16, $word, $word_from_slice, $words_from_slice);
}
}
u8reader_each_addr_size!(u8,
|ptr: *const u8| { unsafe { core::ptr::read(ptr) } },
|ptr: *const u8, buf: &mut [u8]| {
unsafe {
core::ptr::copy_nonoverlapping(ptr, buf.as_mut_ptr(), buf.len())
}
}
);
u8reader_each_addr_size!(U16le,
|ptr: *const u8| {
let mut word = [0u8; 2];
unsafe {
core::ptr::copy_nonoverlapping(ptr, word.as_mut_ptr(), word.len());
}
U16le(u16::from_le_bytes(word))
},
|ptr: *const u8, buf: &mut [U16le]| {
// `U16le` are layout-identical to u16, so we can just copy into buf
unsafe {
core::ptr::copy_nonoverlapping(ptr, buf.as_mut_ptr() as *mut u8, buf.len() * core::mem::size_of::<U16le>())
}
}
);
u8reader_each_addr_size!(U32le,
|ptr: *const u8| {
let mut word = [0u8; 4];
unsafe {
core::ptr::copy_nonoverlapping(ptr, word.as_mut_ptr(), word.len());
}
U32le(u32::from_le_bytes(word))
},
|ptr: *const u8, buf: &mut [U32le]| {
// `U32le` are layout-identical to u32, so we can just copy into buf
unsafe {
core::ptr::copy_nonoverlapping(ptr, buf.as_mut_ptr() as *mut u8, buf.len() * core::mem::size_of::<U32le>())
}
}
);
u8reader_each_addr_size!(U64le,
|ptr: *const u8| {
let mut word = [0u8; 8];
unsafe {
core::ptr::copy_nonoverlapping(ptr, word.as_mut_ptr(), word.len());
}
U64le(u64::from_le_bytes(word))
},
|ptr: *const u8, buf: &mut [U64le]| {
// `U64le` are layout-identical to u64, so we can just copy into buf
unsafe {
core::ptr::copy_nonoverlapping(ptr, buf.as_mut_ptr() as *mut u8, buf.len() * core::mem::size_of::<U64le>())
}
}
);
u8reader_each_addr_size!(U16be,
|ptr: *const u8| {
let mut word = [0u8; 2];
unsafe {
core::ptr::copy_nonoverlapping(ptr, word.as_mut_ptr(), word.len());
}
U16be(u16::from_be_bytes(word))
},
|ptr: *const u8, buf: &mut [U16be]| {
// `U16be` are layout-identical to u16, so we can just copy into buf
unsafe {
core::ptr::copy_nonoverlapping(ptr, buf.as_mut_ptr() as *mut u8, buf.len() * core::mem::size_of::<U16be>())
}
// but now we have to bswap all the words
for i in 0..buf.len() {
buf[i] = U16be(buf[i].0.swap_bytes());
}
}
);
u8reader_each_addr_size!(U32be,
|ptr: *const u8| {
let mut word = [0u8; 4];
unsafe {
core::ptr::copy_nonoverlapping(ptr, word.as_mut_ptr(), word.len());
}
U32be(u32::from_be_bytes(word))
},
|ptr: *const u8, buf: &mut [U32be]| {
// `U32be` are layout-identical to u32, so we can just copy into buf
unsafe {
core::ptr::copy_nonoverlapping(ptr, buf.as_mut_ptr() as *mut u8, buf.len() * core::mem::size_of::<U32be>())
}
// but now we have to bswap all the words
for i in 0..buf.len() {
buf[i] = U32be(buf[i].0.swap_bytes());
}
}
);
u8reader_each_addr_size!(U64be,
|ptr: *const u8| {
let mut word = [0u8; 8];
unsafe {
core::ptr::copy_nonoverlapping(ptr, word.as_mut_ptr(), word.len());
}
U64be(u64::from_be_bytes(word))
},
|ptr: *const u8, buf: &mut [U64be]| {
// `U64be` are layout-identical to u64, so we can just copy into buf
unsafe {
core::ptr::copy_nonoverlapping(ptr, buf.as_mut_ptr() as *mut u8, buf.len() * core::mem::size_of::<U64be>())
}
// but now we have to bswap all the words
for i in 0..buf.len() {
buf[i] = U64be(buf[i].0.swap_bytes());
}
}
);
|