diff options
author | iximeow <me@iximeow.net> | 2024-06-21 01:32:12 -0700 |
---|---|---|
committer | iximeow <me@iximeow.net> | 2024-06-21 01:32:48 -0700 |
commit | e39d6b576da2f25490bf739b61fc8c9f3ab7c2ec (patch) | |
tree | 70359578027f9373ad3e0bfde422d35069e8fa18 /src | |
parent | 70f767370feb9ca056e4baf32f37c6d8d8235e0c (diff) |
separate out display code further, reword comments on InstructionTextSink to be ... stern
Diffstat (limited to 'src')
-rw-r--r-- | src/display.rs | 1020 | ||||
-rw-r--r-- | src/lib.rs | 2 | ||||
-rw-r--r-- | src/long_mode/display.rs | 1192 | ||||
-rw-r--r-- | src/long_mode/mod.rs | 2 |
4 files changed, 1122 insertions, 1094 deletions
diff --git a/src/display.rs b/src/display.rs new file mode 100644 index 0000000..e495aee --- /dev/null +++ b/src/display.rs @@ -0,0 +1,1020 @@ +use core::fmt; + +use crate::safer_unchecked::unreachable_kinda_unchecked; + +extern crate alloc; + +// TODO: find a better place to put this.... +fn c_to_hex(c: u8) -> u8 { + /* + static CHARSET: &'static [u8; 16] = b"0123456789abcdef"; + CHARSET[c as usize] + */ + // the conditional branch below is faster than a lookup, yes + if c < 10 { + b'0' + c + } else { + b'a' + c - 10 + } +} + +pub enum TokenType { + Mnemonic, + Operand, + Immediate, + Register, + Offset, +} + +/// `DisplaySink` allows client code to collect output and minimal markup. this is currently used +/// in formatting instructions for two reasons: +/// * `DisplaySink` implementations have the opportunity to collect starts and ends of tokens at +/// the same time as collecting output itself. +/// * `DisplaySink` implementations provides specialized functions for writing strings in +/// circumstances where a simple "use `core::fmt`" might incur unwanted overhead. +/// +/// spans are reported through `span_start` and `span_exit` to avoid constraining implementations +/// into tracking current output offset (which may not be knowable) or span size (which may be +/// knowable, but incur additional overhead to compute or track). +/// +/// spans are entered and exited in a FILO manner: a function writing to some `DisplaySink` must +/// exit spans in reverse order to when they are entered. a function sequence like +/// `sink.span_start(Operand); sink.span_start(Immediate); sink.span_exit(Operand)` is in error. +/// +/// the `write_*` helpers on `DisplaySink` may be able to take advantage of contraints described in +/// documentation here to better support writing some kinds of inputs than a fully-general solution +/// (such as `core::fmt`) might be able to yield. +/// +/// currently there are two motivating factors for `write_*` helpers: +/// +/// instruction formatting often involves writing small but variable-size strings, such as register +/// names, which is something of a pathological case for string appending as Rust currently exists: +/// this often becomes `memcpy` and specifically a call to the platform's `memcpy` (rather than an +/// inlined `rep movsb`) just to move 3-5 bytes. one relevant Rust issue for reference: +/// https://github.com/rust-lang/rust/issues/92993#issuecomment-2028915232 +/// +/// there are similar papercuts around formatting integers as base-16 numbers, such as +/// https://github.com/rust-lang/rust/pull/122770 . in isolation and in most applications these are +/// not a significant source of overhead. but for programs bounded on decoding and printing +/// instructions, these can add up to significant overhead - on the order of 10-20% of total +/// runtime. +/// +/// `DisplaySink` +pub trait DisplaySink: fmt::Write { + #[inline(always)] + fn write_fixed_size(&mut self, s: &str) -> Result<(), core::fmt::Error> { + self.write_str(s) + } + + /// write a string to this sink that is less than 32 bytes. this is provided for optimization + /// opportunities when writing a variable-length string with known max size. + /// + /// SAFETY: the provided `s` must be less than 32 bytes. if the provided string is longer than + /// 31 bytes, implementations may only copy part of a multi-byte codepoint while writing to a + /// utf-8 string. this may corrupt Rust strings. + unsafe fn write_lt_32(&mut self, s: &str) -> Result<(), core::fmt::Error> { + self.write_str(s) + } + /// write a string to this sink that is less than 16 bytes. this is provided for optimization + /// opportunities when writing a variable-length string with known max size. + /// + /// SAFETY: the provided `s` must be less than 16 bytes. if the provided string is longer than + /// 15 bytes, implementations may only copy part of a multi-byte codepoint while writing to a + /// utf-8 string. this may corrupt Rust strings. + unsafe fn write_lt_16(&mut self, s: &str) -> Result<(), core::fmt::Error> { + self.write_str(s) + } + /// write a string to this sink that is less than 8 bytes. this is provided for optimization + /// opportunities when writing a variable-length string with known max size. + /// + /// SAFETY: the provided `s` must be less than 8 bytes. if the provided string is longer than + /// 7 bytes, implementations may only copy part of a multi-byte codepoint while writing to a + /// utf-8 string. this may corrupt Rust strings. + unsafe fn write_lt_8(&mut self, s: &str) -> Result<(), core::fmt::Error> { + self.write_str(s) + } + + /// write a u8 to the output as a base-16 integer. + /// + /// this is provided for optimization opportunities when the formatted integer can be written + /// directly to the sink (rather than formatted to an intermediate buffer and output as a + /// followup step) + fn write_u8(&mut self, v: u8) -> Result<(), core::fmt::Error> { + write!(self, "{:x}", v) + } + /// write a u16 to the output as a base-16 integer. + /// + /// this is provided for optimization opportunities when the formatted integer can be written + /// directly to the sink (rather than formatted to an intermediate buffer and output as a + /// followup step) + fn write_u16(&mut self, v: u16) -> Result<(), core::fmt::Error> { + write!(self, "{:x}", v) + } + /// write a u32 to the output as a base-16 integer. + /// + /// this is provided for optimization opportunities when the formatted integer can be written + /// directly to the sink (rather than formatted to an intermediate buffer and output as a + /// followup step) + fn write_u32(&mut self, v: u32) -> Result<(), core::fmt::Error> { + write!(self, "{:x}", v) + } + /// write a u64 to the output as a base-16 integer. + /// + /// this is provided for optimization opportunities when the formatted integer can be written + /// directly to the sink (rather than formatted to an intermediate buffer and output as a + /// followup step) + fn write_u64(&mut self, v: u64) -> Result<(), core::fmt::Error> { + write!(self, "{:x}", v) + } + /// enter a region inside which output corresponds to a `ty`. + /// + /// the default implementation of these functions is as a no-op. this way, providing span + /// information to a `DisplaySink` that does not want it is eliminated at compile time. + /// + /// spans are entered and ended in a FILO manner: a function writing to some `DisplaySink` must + /// end spans in reverse order to when they are entered. a function sequence like + /// `sink.span_start(Operand); sink.span_start(Immediate); sink.span_end(Operand)` is in error. + /// + /// a simple use of `span_start`/`span_end` might look something like: + /// ```compile_fail + /// sink.span_start(Operand) + /// sink.write_char('[') + /// sink.span_start(Register) + /// sink.write_fixed_size("rbp") + /// sink.span_end(Register) + /// sink.write_char(']') + /// sink.span_end(Operand) + /// ``` + /// which writes the text `[rbp]`, with span indicators where the operand (`[ ... ]`) begins, + /// as well as the start and end of a register name. + fn span_start(&mut self, _ty: TokenType) { } + /// end a region where a `ty` was written. see docs on [`DisplaySink::span_start`] for more. + fn span_end(&mut self, _ty: TokenType) { } +} + +pub struct NoColorsSink<'a, T: fmt::Write> { + pub out: &'a mut T, +} + +impl<'a, T: fmt::Write> DisplaySink for NoColorsSink<'a, T> { + fn span_start(&mut self, _ty: TokenType) { } + fn span_end(&mut self, _ty: TokenType) { } +} + +impl<'a, T: fmt::Write> fmt::Write for NoColorsSink<'a, T> { + fn write_str(&mut self, s: &str) -> Result<(), core::fmt::Error> { + self.out.write_str(s) + } + fn write_char(&mut self, c: char) -> Result<(), core::fmt::Error> { + self.out.write_char(c) + } + fn write_fmt(&mut self, f: fmt::Arguments) -> Result<(), core::fmt::Error> { + self.out.write_fmt(f) + } +} + +/// this is an implementation detail of yaxpeax-arch and related crates. if you are a user of the +/// disassemblers, do not use this struct. do not depend on this struct existing. this struct is +/// not stable. this struct is not safe for general use. if you use this struct you and your +/// program will be eaten by gremlins. +/// +/// if you are implementing an instruction formatter for the yaxpeax family of crates: this struct +/// is guaranteed to contain a string that is long enough to hold a fully-formatted instruction. +/// because the buffer is guaranteed to be long enough, writes through `InstructionTextSink` are +/// not bounds-checked, and the buffer is never grown. +/// +/// this is wildly dangerous in general use. the public constructor of `InstructionTextSink` is +/// unsafe as a result. as used in `InstructionFormatter`, the buffer is guaranteed to be +/// `clear()`ed before use, `InstructionFormatter` ensures the buffer is large enough, *and* +/// `InstructionFormatter` never allows `InstructionTextSink` to exist in a context where it would +/// be written to without being rewound first. +/// +/// because this opens a very large hole through which `fmt::Write` can become unsafe, incorrect +/// uses of this struct will be hard to debug in general. `InstructionFormatter` is probably at the +/// limit of easily-reasoned-about lifecycle of the buffer, which "only" leaves the problem of +/// ensuring that instruction formatting impls this buffer is passed to are appropriately sized. +/// +/// this is intended to be hidden in docs. if you see this in docs, it's a bug. +#[doc(hidden)] +pub(crate) struct InstructionTextSink<'buf> { + buf: &'buf mut alloc::string::String +} + +impl<'buf> InstructionTextSink<'buf> { + pub unsafe fn new(buf: &'buf mut alloc::string::String) -> Self { + Self { buf } + } +} + +impl<'buf> fmt::Write for InstructionTextSink<'buf> { + fn write_str(&mut self, s: &str) -> Result<(), core::fmt::Error> { + self.buf.write_str(s) + } + fn write_char(&mut self, c: char) -> Result<(), core::fmt::Error> { + // SAFETY: `buf` is assumed to be long enough to hold all input, `buf` at `underlying.len()` + // is valid for writing, but may be uninitialized. + // + // this function is essentially equivalent to `Vec::push` specialized for the case that + // `len < buf.capacity()`: + // https://github.com/rust-lang/rust/blob/be9e27e/library/alloc/src/vec/mod.rs#L1993-L2006 + unsafe { + let underlying = self.buf.as_mut_vec(); + // `InstructionTextSink::write_char` is only used by yaxpeax-x86, and is only used to + // write single ASCII characters. this is wrong in the general case, but `write_char` + // here is not going to be used in the general case. + if cfg!(debug_asertions) { + panic!("InstructionTextSink::write_char would truncate output"); + } + let to_push = c as u8; + // `ptr::write` here because `underlying.add(underlying.len())` may not point to an + // initialized value, which would mean that turning that pointer into a `&mut u8` to + // store through would be UB. `ptr::write` avoids taking the mut ref. + underlying.as_mut_ptr().offset(underlying.len() as isize).write(to_push); + // we have initialized all (one) bytes that `set_len` is increasing the length to + // include. + underlying.set_len(underlying.len() + 1); + } + Ok(()) + } +} + +/// this DisplaySink impl exists to support somewhat more performant buffering of the kinds of +/// strings `yaxpeax-x86` uses in formatting instructions. +impl DisplaySink for alloc::string::String { + #[inline(always)] + fn write_fixed_size(&mut self, s: &str) -> Result<(), core::fmt::Error> { + self.reserve(s.len()); + let buf = unsafe { self.as_mut_vec() }; + let new_bytes = s.as_bytes(); + + if new_bytes.len() == 0 { + unsafe { unreachable_kinda_unchecked() } + } + + if new_bytes.len() >= 16 { + unsafe { unreachable_kinda_unchecked() } + } + + unsafe { + let dest = buf.as_mut_ptr().offset(buf.len() as isize); + + // this used to be enough to bamboozle llvm away from + // https://github.com/rust-lang/rust/issues/92993#issuecomment-2028915232 + // if `s` is not fixed size. somewhere between Rust 1.68 and Rust 1.74 this stopped + // being sufficient, so `write_fixed_size` truly should only be used for fixed size `s` + // (otherwise this is a libc memcpy call in disguise). for fixed-size strings this + // unrolls into some kind of appropriate series of `mov`. + dest.offset(0 as isize).write(new_bytes[0]); + for i in 1..new_bytes.len() { + dest.offset(i as isize).write(new_bytes[i]); + } + + buf.set_len(buf.len() + new_bytes.len()); + } + + Ok(()) + } + unsafe fn write_lt_32(&mut self, s: &str) -> Result<(), fmt::Error> { + self.reserve(s.len()); + + // SAFETY: todo + let buf = unsafe { self.as_mut_vec() }; + let new_bytes = s.as_bytes(); + + // should get DCE + if new_bytes.len() >= 32 { + unsafe { core::hint::unreachable_unchecked() } + } + + unsafe { + let dest = buf.as_mut_ptr().offset(buf.len() as isize); + let src = new_bytes.as_ptr(); + + let rem = new_bytes.len() as isize; + + // set_len early because there is no way to avoid the following asm!() writing that + // same number of bytes into buf + buf.set_len(buf.len() + new_bytes.len()); + + core::arch::asm!( + "6:", + "cmp {rem:e}, 16", + "jb 7f", + "mov {buf:r}, qword ptr [{src} + {rem} - 16]", + "mov qword ptr [{dest} + {rem} - 16], {buf:r}", + "mov {buf:r}, qword ptr [{src} + {rem} - 8]", + "mov qword ptr [{dest} + {rem} - 8], {buf:r}", + "sub {rem:e}, 16", + "jz 11f", + "7:", + "cmp {rem:e}, 8", + "jb 8f", + "mov {buf:r}, qword ptr [{src} + {rem} - 8]", + "mov qword ptr [{dest} + {rem} - 8], {buf:r}", + "sub {rem:e}, 8", + "jz 11f", + "8:", + "cmp {rem:e}, 4", + "jb 9f", + "mov {buf:e}, dword ptr [{src} + {rem} - 4]", + "mov dword ptr [{dest} + {rem} - 4], {buf:e}", + "sub {rem:e}, 4", + "jz 11f", + "9:", + "cmp {rem:e}, 2", + "jb 10f", + "mov {buf:x}, word ptr [{src} + {rem} - 2]", + "mov word ptr [{dest} + {rem} - 2], {buf:x}", + "sub {rem:e}, 2", + "jz 11f", + "10:", + "cmp {rem:e}, 1", + "jb 11f", + "mov {buf:l}, byte ptr [{src} + {rem} - 1]", + "mov byte ptr [{dest} + {rem} - 1], {buf:l}", + "11:", + src = in(reg) src, + dest = in(reg) dest, + rem = inout(reg) rem => _, + buf = out(reg) _, + options(nostack), + ); + } + /* + for i in 0..new_bytes.len() { + unsafe { + buf.as_mut_ptr().offset(buf.len() as isize).offset(i as isize).write_volatile(new_bytes[i]); + } + } + */ + + Ok(()) + } + unsafe fn write_lt_16(&mut self, s: &str) -> Result<(), fmt::Error> { + self.reserve(s.len()); + + // SAFETY: todo + let buf = unsafe { self.as_mut_vec() }; + let new_bytes = s.as_bytes(); + + // should get DCE + if new_bytes.len() >= 16 { + unsafe { core::hint::unreachable_unchecked() } + } + + unsafe { + let dest = buf.as_mut_ptr().offset(buf.len() as isize); + let src = new_bytes.as_ptr(); + + let rem = new_bytes.len() as isize; + + // set_len early because there is no way to avoid the following asm!() writing that + // same number of bytes into buf + buf.set_len(buf.len() + new_bytes.len()); + + core::arch::asm!( + "7:", + "cmp {rem:e}, 8", + "jb 8f", + "mov {buf:r}, qword ptr [{src} + {rem} - 8]", + "mov qword ptr [{dest} + {rem} - 8], {buf:r}", + "sub {rem:e}, 8", + "jz 11f", + "8:", + "cmp {rem:e}, 4", + "jb 9f", + "mov {buf:e}, dword ptr [{src} + {rem} - 4]", + "mov dword ptr [{dest} + {rem} - 4], {buf:e}", + "sub {rem:e}, 4", + "jz 11f", + "9:", + "cmp {rem:e}, 2", + "jb 10f", + "mov {buf:x}, word ptr [{src} + {rem} - 2]", + "mov word ptr [{dest} + {rem} - 2], {buf:x}", + "sub {rem:e}, 2", + "jz 11f", + "10:", + "cmp {rem:e}, 1", + "jb 11f", + "mov {buf:l}, byte ptr [{src} + {rem} - 1]", + "mov byte ptr [{dest} + {rem} - 1], {buf:l}", + "11:", + src = in(reg) src, + dest = in(reg) dest, + rem = inout(reg) rem => _, + buf = out(reg) _, + options(nostack), + ); + } + /* + for i in 0..new_bytes.len() { + unsafe { + buf.as_mut_ptr().offset(buf.len() as isize).offset(i as isize).write_volatile(new_bytes[i]); + } + } + */ + + Ok(()) + } + unsafe fn write_lt_8(&mut self, s: &str) -> Result<(), fmt::Error> { + self.reserve(s.len()); + + // SAFETY: todo + let buf = unsafe { self.as_mut_vec() }; + let new_bytes = s.as_bytes(); + + // should get DCE + if new_bytes.len() >= 8 { + unsafe { core::hint::unreachable_unchecked() } + } + + unsafe { + let dest = buf.as_mut_ptr().offset(buf.len() as isize); + let src = new_bytes.as_ptr(); + + let rem = new_bytes.len() as isize; + + // set_len early because there is no way to avoid the following asm!() writing that + // same number of bytes into buf + buf.set_len(buf.len() + new_bytes.len()); + + core::arch::asm!( + "8:", + "cmp {rem:e}, 4", + "jb 9f", + "mov {buf:e}, dword ptr [{src} + {rem} - 4]", + "mov dword ptr [{dest} + {rem} - 4], {buf:e}", + "sub {rem:e}, 4", + "jz 11f", + "9:", + "cmp {rem:e}, 2", + "jb 10f", + "mov {buf:x}, word ptr [{src} + {rem} - 2]", + "mov word ptr [{dest} + {rem} - 2], {buf:x}", + "sub {rem:e}, 2", + "jz 11f", + "10:", + "cmp {rem:e}, 1", + "jb 11f", + "mov {buf:l}, byte ptr [{src} + {rem} - 1]", + "mov byte ptr [{dest} + {rem} - 1], {buf:l}", + "11:", + src = in(reg) src, + dest = in(reg) dest, + rem = inout(reg) rem => _, + buf = out(reg) _, + options(nostack), + ); + } + /* + for i in 0..new_bytes.len() { + unsafe { + buf.as_mut_ptr().offset(buf.len() as isize).offset(i as isize).write_volatile(new_bytes[i]); + } + } + */ + + Ok(()) + } + /// write a u8 to the output as a base-16 integer. + /// + /// this is provided for optimization opportunities when the formatted integer can be written + /// directly to the sink (rather than formatted to an intermediate buffer and output as a + /// followup step) + #[inline(always)] + fn write_u8(&mut self, mut v: u8) -> Result<(), core::fmt::Error> { + if v == 0 { + return self.write_fixed_size("0"); + } + // we can fairly easily predict the size of a formatted string here with lzcnt, which also + // means we can write directly into the correct offsets of the output string. + let printed_size = ((8 - v.leading_zeros() + 3) >> 2) as usize; + + self.reserve(printed_size); + + let buf = unsafe { self.as_mut_vec() }; + let new_len = buf.len() + printed_size; + + unsafe { + buf.set_len(new_len); + } + let mut p = unsafe { buf.as_mut_ptr().offset(new_len as isize) }; + + loop { + let digit = v % 16; + let c = c_to_hex(digit as u8); + unsafe { + p = p.offset(-1); + p.write(c); + } + v = v / 16; + if v == 0 { + break; + } + } + + Ok(()) + } + /// write a u16 to the output as a base-16 integer. + /// + /// this is provided for optimization opportunities when the formatted integer can be written + /// directly to the sink (rather than formatted to an intermediate buffer and output as a + /// followup step) + #[inline(always)] + fn write_u16(&mut self, mut v: u16) -> Result<(), core::fmt::Error> { + if v == 0 { + return self.write_fixed_size("0"); + } + // we can fairly easily predict the size of a formatted string here with lzcnt, which also + // means we can write directly into the correct offsets of the output string. + let printed_size = ((16 - v.leading_zeros() + 3) >> 2) as usize; + + self.reserve(printed_size); + + let buf = unsafe { self.as_mut_vec() }; + let new_len = buf.len() + printed_size; + + unsafe { + buf.set_len(new_len); + } + let mut p = unsafe { buf.as_mut_ptr().offset(new_len as isize) }; + + loop { + let digit = v % 16; + let c = c_to_hex(digit as u8); + unsafe { + p = p.offset(-1); + p.write(c); + } + v = v / 16; + if v == 0 { + break; + } + } + + Ok(()) + } + /// write a u32 to the output as a base-16 integer. + /// + /// this is provided for optimization opportunities when the formatted integer can be written + /// directly to the sink (rather than formatted to an intermediate buffer and output as a + /// followup step) + #[inline(always)] + fn write_u32(&mut self, mut v: u32) -> Result<(), core::fmt::Error> { + if v == 0 { + return self.write_fixed_size("0"); + } + // we can fairly easily predict the size of a formatted string here with lzcnt, which also + // means we can write directly into the correct offsets of the output string. + let printed_size = ((32 - v.leading_zeros() + 3) >> 2) as usize; + + self.reserve(printed_size); + + let buf = unsafe { self.as_mut_vec() }; + let new_len = buf.len() + printed_size; + + unsafe { + buf.set_len(new_len); + } + let mut p = unsafe { buf.as_mut_ptr().offset(new_len as isize) }; + + loop { + let digit = v % 16; + let c = c_to_hex(digit as u8); + unsafe { + p = p.offset(-1); + p.write(c); + } + v = v / 16; + if v == 0 { + break; + } + } + + Ok(()) + } + /// write a u64 to the output as a base-16 integer. + /// + /// this is provided for optimization opportunities when the formatted integer can be written + /// directly to the sink (rather than formatted to an intermediate buffer and output as a + /// followup step) + #[inline(always)] + fn write_u64(&mut self, mut v: u64) -> Result<(), core::fmt::Error> { + if v == 0 { + return self.write_fixed_size("0"); + } + // we can fairly easily predict the size of a formatted string here with lzcnt, which also + // means we can write directly into the correct offsets of the output string. + let printed_size = ((64 - v.leading_zeros() + 3) >> 2) as usize; + + self.reserve(printed_size); + + let buf = unsafe { self.as_mut_vec() }; + let new_len = buf.len() + printed_size; + + unsafe { + buf.set_len(new_len); + } + let mut p = unsafe { buf.as_mut_ptr().offset(new_len as isize) }; + + loop { + let digit = v % 16; + let c = c_to_hex(digit as u8); + unsafe { + p = p.offset(-1); + p.write(c); + } + v = v / 16; + if v == 0 { + break; + } + } + + Ok(()) + } + fn span_start(&mut self, _ty: TokenType) {} + fn span_end(&mut self, _ty: TokenType) {} +} + +impl<'buf> DisplaySink for InstructionTextSink<'buf> { + #[inline(always)] + fn write_fixed_size(&mut self, s: &str) -> Result<(), core::fmt::Error> { + let buf = unsafe { self.buf.as_mut_vec() }; + let new_bytes = s.as_bytes(); + + if new_bytes.len() == 0 { + return Ok(()); + } + + if new_bytes.len() >= 16 { + unsafe { unreachable_kinda_unchecked() } + } + + unsafe { + let dest = buf.as_mut_ptr().offset(buf.len() as isize); + + // this used to be enough to bamboozle llvm away from + // https://github.com/rust-lang/rust/issues/92993#issuecomment-2028915232https://github.com/rust-lang/rust/issues/92993#issuecomment-2028915232 + // if `s` is not fixed size. somewhere between Rust 1.68 and Rust 1.74 this stopped + // being sufficient, so `write_fixed_size` truly should only be used for fixed size `s` + // (otherwise this is a libc memcpy call in disguise). for fixed-size strings this + // unrolls into some kind of appropriate series of `mov`. + dest.offset(0 as isize).write(new_bytes[0]); + for i in 1..new_bytes.len() { + dest.offset(i as isize).write(new_bytes[i]); + } + + buf.set_len(buf.len() + new_bytes.len()); + } + + Ok(()) + } + unsafe fn write_lt_32(&mut self, s: &str) -> Result<(), fmt::Error> { + // SAFETY: todo + let buf = unsafe { self.buf.as_mut_vec() }; + let new_bytes = s.as_bytes(); + + // should get DCE + if new_bytes.len() >= 32 { + unsafe { core::hint::unreachable_unchecked() } + } + + unsafe { + let dest = buf.as_mut_ptr().offset(buf.len() as isize); + let src = new_bytes.as_ptr(); + + let rem = new_bytes.len() as isize; + + // set_len early because there is no way to avoid the following asm!() writing that + // same number of bytes into buf + buf.set_len(buf.len() + new_bytes.len()); + + core::arch::asm!( + "6:", + "cmp {rem:e}, 16", + "jb 7f", + "mov {buf:r}, qword ptr [{src} + {rem} - 16]", + "mov qword ptr [{dest} + {rem} - 16], {buf:r}", + "mov {buf:r}, qword ptr [{src} + {rem} - 8]", + "mov qword ptr [{dest} + {rem} - 8], {buf:r}", + "sub {rem:e}, 16", + "jz 11f", + "7:", + "cmp {rem:e}, 8", + "jb 8f", + "mov {buf:r}, qword ptr [{src} + {rem} - 8]", + "mov qword ptr [{dest} + {rem} - 8], {buf:r}", + "sub {rem:e}, 8", + "jz 11f", + "8:", + "cmp {rem:e}, 4", + "jb 9f", + "mov {buf:e}, dword ptr [{src} + {rem} - 4]", + "mov dword ptr [{dest} + {rem} - 4], {buf:e}", + "sub {rem:e}, 4", + "jz 11f", + "9:", + "cmp {rem:e}, 2", + "jb 10f", + "mov {buf:x}, word ptr [{src} + {rem} - 2]", + "mov word ptr [{dest} + {rem} - 2], {buf:x}", + "sub {rem:e}, 2", + "jz 11f", + "10:", + "cmp {rem:e}, 1", + "jb 11f", + "mov {buf:l}, byte ptr [{src} + {rem} - 1]", + "mov byte ptr [{dest} + {rem} - 1], {buf:l}", + "11:", + src = in(reg) src, + dest = in(reg) dest, + rem = inout(reg) rem => _, + buf = out(reg) _, + options(nostack), + ); + } + /* + for i in 0..new_bytes.len() { + unsafe { + buf.as_mut_ptr().offset(buf.len() as isize).offset(i as isize).write_volatile(new_bytes[i]); + } + } + */ + + Ok(()) + } + unsafe fn write_lt_16(&mut self, s: &str) -> Result<(), fmt::Error> { + // SAFETY: todo + let buf = unsafe { self.buf.as_mut_vec() }; + let new_bytes = s.as_bytes(); + + // should get DCE + if new_bytes.len() >= 16 { + unsafe { core::hint::unreachable_unchecked() } + } + + unsafe { + let dest = buf.as_mut_ptr().offset(buf.len() as isize); + let src = new_bytes.as_ptr(); + + let rem = new_bytes.len() as isize; + + // set_len early because there is no way to avoid the following asm!() writing that + // same number of bytes into buf + buf.set_len(buf.len() + new_bytes.len()); + + core::arch::asm!( + "7:", + "cmp {rem:e}, 8", + "jb 8f", + "mov {buf:r}, qword ptr [{src} + {rem} - 8]", + "mov qword ptr [{dest} + {rem} - 8], {buf:r}", + "sub {rem:e}, 8", + "jz 11f", + "8:", + "cmp {rem:e}, 4", + "jb 9f", + "mov {buf:e}, dword ptr [{src} + {rem} - 4]", + "mov dword ptr [{dest} + {rem} - 4], {buf:e}", + "sub {rem:e}, 4", + "jz 11f", + "9:", + "cmp {rem:e}, 2", + "jb 10f", + "mov {buf:x}, word ptr [{src} + {rem} - 2]", + "mov word ptr [{dest} + {rem} - 2], {buf:x}", + "sub {rem:e}, 2", + "jz 11f", + "10:", + "cmp {rem:e}, 1", + "jb 11f", + "mov {buf:l}, byte ptr [{src} + {rem} - 1]", + "mov byte ptr [{dest} + {rem} - 1], {buf:l}", + "11:", + src = in(reg) src, + dest = in(reg) dest, + rem = inout(reg) rem => _, + buf = out(reg) _, + options(nostack), + ); + } + /* + for i in 0..new_bytes.len() { + unsafe { + buf.as_mut_ptr().offset(buf.len() as isize).offset(i as isize).write_volatile(new_bytes[i]); + } + } + */ + + Ok(()) + } + unsafe fn write_lt_8(&mut self, s: &str) -> Result<(), fmt::Error> { + // SAFETY: todo + let buf = unsafe { self.buf.as_mut_vec() }; + let new_bytes = s.as_bytes(); + + // should get DCE + if new_bytes.len() >= 8 { + unsafe { core::hint::unreachable_unchecked() } + } + + unsafe { + let dest = buf.as_mut_ptr().offset(buf.len() as isize); + let src = new_bytes.as_ptr(); + + let rem = new_bytes.len() as isize; + + // set_len early because there is no way to avoid the following asm!() writing that + // same number of bytes into buf + buf.set_len(buf.len() + new_bytes.len()); + + core::arch::asm!( + "8:", + "cmp {rem:e}, 4", + "jb 9f", + "mov {buf:e}, dword ptr [{src} + {rem} - 4]", + "mov dword ptr [{dest} + {rem} - 4], {buf:e}", + "sub {rem:e}, 4", + "jz 11f", + "9:", + "cmp {rem:e}, 2", + "jb 10f", + "mov {buf:x}, word ptr [{src} + {rem} - 2]", + "mov word ptr [{dest} + {rem} - 2], {buf:x}", + "sub {rem:e}, 2", + "jz 11f", + "10:", + "cmp {rem:e}, 1", + "jb 11f", + "mov {buf:l}, byte ptr [{src} + {rem} - 1]", + "mov byte ptr [{dest} + {rem} - 1], {buf:l}", + "11:", + src = in(reg) src, + dest = in(reg) dest, + rem = inout(reg) rem => _, + buf = out(reg) _, + options(nostack), + ); + } + /* + for i in 0..new_bytes.len() { + unsafe { + buf.as_mut_ptr().offset(buf.len() as isize).offset(i as isize).write_volatile(new_bytes[i]); + } + } + */ + + Ok(()) + } + /// write a u8 to the output as a base-16 integer. + /// + /// this is provided for optimization opportunities when the formatted integer can be written + /// directly to the sink (rather than formatted to an intermediate buffer and output as a + /// followup step) + #[inline(always)] + fn write_u8(&mut self, mut v: u8) -> Result<(), core::fmt::Error> { + if v == 0 { + return self.write_fixed_size("0"); + } + // we can fairly easily predict the size of a formatted string here with lzcnt, which also + // means we can write directly into the correct offsets of the output string. + let printed_size = ((8 - v.leading_zeros() + 3) >> 2) as usize; + + let buf = unsafe { self.buf.as_mut_vec() }; + let new_len = buf.len() + printed_size; + + unsafe { + buf.set_len(new_len); + } + let mut p = unsafe { buf.as_mut_ptr().offset(new_len as isize) }; + + loop { + let digit = v % 16; + let c = c_to_hex(digit as u8); + unsafe { + p = p.offset(-1); + p.write(c); + } + v = v / 16; + if v == 0 { + break; + } + } + + Ok(()) + } + /// write a u16 to the output as a base-16 integer. + /// + /// this is provided for optimization opportunities when the formatted integer can be written + /// directly to the sink (rather than formatted to an intermediate buffer and output as a + /// followup step) + #[inline(always)] + fn write_u16(&mut self, mut v: u16) -> Result<(), core::fmt::Error> { + if v == 0 { + return self.write_fixed_size("0"); + } + // we can fairly easily predict the size of a formatted string here with lzcnt, which also + // means we can write directly into the correct offsets of the output string. + let printed_size = ((16 - v.leading_zeros() + 3) >> 2) as usize; + + let buf = unsafe { self.buf.as_mut_vec() }; + let new_len = buf.len() + printed_size; + + unsafe { + buf.set_len(new_len); + } + let mut p = unsafe { buf.as_mut_ptr().offset(new_len as isize) }; + + loop { + let digit = v % 16; + let c = c_to_hex(digit as u8); + unsafe { + p = p.offset(-1); + p.write(c); + } + v = v / 16; + if v == 0 { + break; + } + } + + Ok(()) + } + /// write a u32 to the output as a base-16 integer. + /// + /// this is provided for optimization opportunities when the formatted integer can be written + /// directly to the sink (rather than formatted to an intermediate buffer and output as a + /// followup step) + #[inline(always)] + fn write_u32(&mut self, mut v: u32) -> Result<(), core::fmt::Error> { + if v == 0 { + return self.write_fixed_size("0"); + } + // we can fairly easily predict the size of a formatted string here with lzcnt, which also + // means we can write directly into the correct offsets of the output string. + let printed_size = ((32 - v.leading_zeros() + 3) >> 2) as usize; + + let buf = unsafe { self.buf.as_mut_vec() }; + let new_len = buf.len() + printed_size; + + unsafe { + buf.set_len(new_len); + } + let mut p = unsafe { buf.as_mut_ptr().offset(new_len as isize) }; + + loop { + let digit = v % 16; + let c = c_to_hex(digit as u8); + unsafe { + p = p.offset(-1); + p.write(c); + } + v = v / 16; + if v == 0 { + break; + } + } + + Ok(()) + } + /// write a u64 to the output as a base-16 integer. + /// + /// this is provided for optimization opportunities when the formatted integer can be written + /// directly to the sink (rather than formatted to an intermediate buffer and output as a + /// followup step) + #[inline(always)] + fn write_u64(&mut self, mut v: u64) -> Result<(), core::fmt::Error> { + if v == 0 { + return self.write_fixed_size("0"); + } + // we can fairly easily predict the size of a formatted string here with lzcnt, which also + // means we can write directly into the correct offsets of the output string. + let printed_size = ((64 - v.leading_zeros() + 3) >> 2) as usize; + + let buf = unsafe { self.buf.as_mut_vec() }; + let new_len = buf.len() + printed_size; + + unsafe { + buf.set_len(new_len); + } + let mut p = unsafe { buf.as_mut_ptr().offset(new_len as isize) }; + + loop { + let digit = v % 16; + let c = c_to_hex(digit as u8); + unsafe { + p = p.offset(-1); + p.write(c); + } + v = v / 16; + if v == 0 { + break; + } + } + + Ok(()) + } + fn span_start(&mut self, _ty: TokenType) {} + fn span_end(&mut self, _ty: TokenType) {} +} @@ -139,6 +139,8 @@ pub mod real_mode; pub use real_mode::Arch as x86_16; mod safer_unchecked; +#[cfg(feature = "fmt")] +mod display; const MEM_SIZE_STRINGS: [&'static str; 65] = [ "BUG", diff --git a/src/long_mode/display.rs b/src/long_mode/display.rs index ca5e580..d9799e1 100644 --- a/src/long_mode/display.rs +++ b/src/long_mode/display.rs @@ -4,10 +4,12 @@ use yaxpeax_arch::{Colorize, ShowContextual, NoColors, YaxColors}; use yaxpeax_arch::display::*; use crate::safer_unchecked::GetSaferUnchecked as _; -use crate::safer_unchecked::unreachable_kinda_unchecked; use crate::MEM_SIZE_STRINGS; use crate::long_mode::{RegSpec, Opcode, Operand, MergeMode, InstDecoder, Instruction, Segment, PrefixRex, OperandSpec}; +use crate::display::DisplaySink; +use crate::display::TokenType; + impl fmt::Display for InstDecoder { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { if self == &InstDecoder::default() { @@ -363,1069 +365,6 @@ impl <T: fmt::Write, Y: YaxColors> Colorize<T, Y> for Operand { } } -pub enum TokenType { - Mnemonic, - Operand, - Immediate, - Register, - Offset, -} - -/// `DisplaySink` allows client code to collect output and minimal markup. this is currently used -/// in formatting instructions for two reasons: -/// * `DisplaySink` implementations have the opportunity to collect starts and ends of tokens at -/// the same time as collecting output itself. -/// * `DisplaySink` implementations provides specialized functions for writing strings in -/// circumstances where a simple "use `core::fmt`" might incur unwanted overhead. -/// -/// spans are reported through `span_start` and `span_exit` to avoid constraining implementations -/// into tracking current output offset (which may not be knowable) or span size (which may be -/// knowable, but incur additional overhead to compute or track). -/// -/// spans are entered and exited in a FILO manner: a function writing to some `DisplaySink` must -/// exit spans in reverse order to when they are entered. a function sequence like -/// `sink.span_start(Operand); sink.span_start(Immediate); sink.span_exit(Operand)` is in error. -/// -/// the `write_*` helpers on `DisplaySink` may be able to take advantage of contraints described in -/// documentation here to better support writing some kinds of inputs than a fully-general solution -/// (such as `core::fmt`) might be able to yield. -/// -/// currently there are two motivating factors for `write_*` helpers: -/// -/// instruction formatting often involves writing small but variable-size strings, such as register -/// names, which is something of a pathological case for string appending as Rust currently exists: -/// this often becomes `memcpy` and specifically a call to the platform's `memcpy` (rather than an -/// inlined `rep movsb`) just to move 3-5 bytes. one relevant Rust issue for reference: -/// https://github.com/rust-lang/rust/issues/92993#issuecomment-2028915232 -/// -/// there are similar papercuts around formatting integers as base-16 numbers, such as -/// https://github.com/rust-lang/rust/pull/122770 . in isolation and in most applications these are -/// not a significant source of overhead. but for programs bounded on decoding and printing -/// instructions, these can add up to significant overhead - on the order of 10-20% of total -/// runtime. -/// -/// `DisplaySink` -pub trait DisplaySink: fmt::Write { - #[inline(always)] - fn write_fixed_size(&mut self, s: &str) -> Result<(), core::fmt::Error> { - self.write_str(s) - } - - /// write a string to this sink that is less than 32 bytes. this is provided for optimization - /// opportunities when writing a variable-length string with known max size. - /// - /// SAFETY: the provided `s` must be less than 32 bytes. if the provided string is longer than - /// 31 bytes, implementations may only copy part of a multi-byte codepoint while writing to a - /// utf-8 string. this may corrupt Rust strings. - unsafe fn write_lt_32(&mut self, s: &str) -> Result<(), core::fmt::Error> { - self.write_str(s) - } - /// write a string to this sink that is less than 16 bytes. this is provided for optimization - /// opportunities when writing a variable-length string with known max size. - /// - /// SAFETY: the provided `s` must be less than 16 bytes. if the provided string is longer than - /// 15 bytes, implementations may only copy part of a multi-byte codepoint while writing to a - /// utf-8 string. this may corrupt Rust strings. - unsafe fn write_lt_16(&mut self, s: &str) -> Result<(), core::fmt::Error> { - self.write_str(s) - } - /// write a string to this sink that is less than 8 bytes. this is provided for optimization - /// opportunities when writing a variable-length string with known max size. - /// - /// SAFETY: the provided `s` must be less than 8 bytes. if the provided string is longer than - /// 7 bytes, implementations may only copy part of a multi-byte codepoint while writing to a - /// utf-8 string. this may corrupt Rust strings. - unsafe fn write_lt_8(&mut self, s: &str) -> Result<(), core::fmt::Error> { - self.write_str(s) - } - - /// write a u8 to the output as a base-16 integer. - /// - /// this is provided for optimization opportunities when the formatted integer can be written - /// directly to the sink (rather than formatted to an intermediate buffer and output as a - /// followup step) - fn write_u8(&mut self, v: u8) -> Result<(), core::fmt::Error> { - write!(self, "{:x}", v) - } - /// write a u16 to the output as a base-16 integer. - /// - /// this is provided for optimization opportunities when the formatted integer can be written - /// directly to the sink (rather than formatted to an intermediate buffer and output as a - /// followup step) - fn write_u16(&mut self, v: u16) -> Result<(), core::fmt::Error> { - write!(self, "{:x}", v) - } - /// write a u32 to the output as a base-16 integer. - /// - /// this is provided for optimization opportunities when the formatted integer can be written - /// directly to the sink (rather than formatted to an intermediate buffer and output as a - /// followup step) - fn write_u32(&mut self, v: u32) -> Result<(), core::fmt::Error> { - write!(self, "{:x}", v) - } - /// write a u64 to the output as a base-16 integer. - /// - /// this is provided for optimization opportunities when the formatted integer can be written - /// directly to the sink (rather than formatted to an intermediate buffer and output as a - /// followup step) - fn write_u64(&mut self, v: u64) -> Result<(), core::fmt::Error> { - write!(self, "{:x}", v) - } - /// enter a region inside which output corresponds to a `ty`. - /// - /// the default implementation of these functions is as a no-op. this way, providing span - /// information to a `DisplaySink` that does not want it is eliminated at compile time. - /// - /// spans are entered and ended in a FILO manner: a function writing to some `DisplaySink` must - /// end spans in reverse order to when they are entered. a function sequence like - /// `sink.span_start(Operand); sink.span_start(Immediate); sink.span_end(Operand)` is in error. - /// - /// a simple use of `span_start`/`span_end` might look something like: - /// ```compile_fail - /// sink.span_start(Operand) - /// sink.write_char('[') - /// sink.span_start(Register) - /// sink.write_fixed_size("rbp") - /// sink.span_end(Register) - /// sink.write_char(']') - /// sink.span_end(Operand) - /// ``` - /// which writes the text `[rbp]`, with span indicators where the operand (`[ ... ]`) begins, - /// as well as the start and end of a register name. - fn span_start(&mut self, _ty: TokenType) { } - /// end a region where a `ty` was written. see docs on [`DisplaySink::span_start`] for more. - fn span_end(&mut self, _ty: TokenType) { } -} - -pub struct NoColorsSink<'a, T: fmt::Write> { - pub out: &'a mut T, -} - -impl<'a, T: fmt::Write> DisplaySink for NoColorsSink<'a, T> { - fn span_start(&mut self, _ty: TokenType) { } - fn span_end(&mut self, _ty: TokenType) { } -} - -impl<'a, T: fmt::Write> fmt::Write for NoColorsSink<'a, T> { - fn write_str(&mut self, s: &str) -> Result<(), core::fmt::Error> { - self.out.write_str(s) - } - fn write_char(&mut self, c: char) -> Result<(), core::fmt::Error> { - self.out.write_char(c) - } - fn write_fmt(&mut self, f: fmt::Arguments) -> Result<(), core::fmt::Error> { - self.out.write_fmt(f) - } -} - -/// helper to format `amd64` instructions with highest throughupt and least configuration. -/// -/// ### when to use this over `fmt::Display`? -/// -/// `fmt::Display` is a fair choice in most cases. in some cases, `InstructionFormatter` may -/// support formatting options that may be difficult to configure for a `Display` impl. -/// additionally, `InstructionFormatter` may be able to specialize more effectively where -/// `fmt::Display`, writing to a generic `fmt::Write`, may not. -/// -/// if your use case for `yaxpeax-x86` involves being bounded on the speed of disassembling and -/// formatting instructions, [`InstructionFormatter::format_inst`] has been measured as up to 11% -/// faster than an equivalent `write!(buf, "{}", inst)`. -/// -/// `InstructionFormatter` involves internal allocations; if your use case for `yaxpeax-x86` -/// requires allocations never occurring, it is not an appropriate tool. -/// -/// ### example -/// -/// ``` -/// use yaxpeax_x86::long_mode::InstDecoder; -/// use yaxpeax_x86::long_mode::InstructionFormatter; -/// -/// let bytes = &[0x33, 0xc0]; -/// let inst = InstDecoder::default().decode_slice(bytes).expect("can decode"); -/// let mut formatter = InstructionFormatter::new(); -/// assert_eq!( -/// formatter.format_inst(&inst).expect("can format"), -/// "xor eax, eax" -/// ); -/// -/// // or, getting the formatted instruction with `text_str`: -/// assert_eq!( -/// formatter.text_str(), -/// "xor eax, eax" -/// ); -/// ``` -pub struct InstructionFormatter { - content: alloc::string::String, -} - -impl InstructionFormatter { - /// create an `InstructionFormatter` with default settings. `InstructionFormatter`'s default - /// settings format instructions identically to their corresponding `fmt::Display`. - pub fn new() -> Self { - let mut buf = alloc::string::String::new(); - // TODO: move 512 out to a MAX_INSTRUCTION_LEN const and appropriate justification (and - // fuzzing and ..) - buf.reserve(512); - Self { - content: buf, - } - } - - /// format `inst` through this formatter, storing the formatted text in this formatter's - /// internal buffer. returns a borrow of that same internal buffer for convenience. - /// - /// this clears and reuses an internal buffer; if an instruction had been previously formatted - /// through this formatter, it will be overwritten. - pub fn format_inst<'formatter>(&'formatter mut self, inst: &Instruction) -> Result<&'formatter str, fmt::Error> { - let mut handle = self.write_handle(); - - inst.write_to(&mut handle)?; - - Ok(self.text_str()) - } - - /// return a borrow of this formatter's buffer. if an instruction has been formatted, the - /// returned `&str` contains that formatted instruction's text. - pub fn text_str(&self) -> &str { - self.content.as_str() - } - - fn write_handle(&mut self) -> InstructionTextSink { - self.content.clear(); - InstructionTextSink { - buf: &mut self.content - } - } -} - -/// this private struct is guaranteed to contain a string that is long enough to hold a -/// fully-formatted x86 instruction. -/// -/// this is wildly dangerous in general use, but because of the constrained lifecycle of -/// `InstructionTextSink` in the context of `InstructionFormatter`, it's OK to use here. it is -/// wildly dangerous because writing to this sink does not bounds check and assumes the contained -/// `buf` is large enough for any input. as an example: if `buf` did not have enough space -/// available from its current position, the `write_*` methods would write into whatever happens to -/// be after `buf` in memory. -/// -/// don't make this pub. if this is pub in docs, it's a bug. -struct InstructionTextSink<'buf> { - buf: &'buf mut alloc::string::String -} - -impl<'buf> fmt::Write for InstructionTextSink<'buf> { - fn write_str(&mut self, s: &str) -> Result<(), core::fmt::Error> { - self.buf.write_str(s) - } - fn write_char(&mut self, c: char) -> Result<(), core::fmt::Error> { - // SAFETY: `buf` is assumed to be long enough to hold all input, `buf` at `underlying.len()` - // is valid for writing, but may be uninitialized. - // - // this function is essentially equivalent to `Vec::push` specialized for the case that - // `len < buf.capacity()`: - // https://github.com/rust-lang/rust/blob/be9e27e/library/alloc/src/vec/mod.rs#L1993-L2006 - unsafe { - let underlying = self.buf.as_mut_vec(); - // `InstructionTextSink::write_char` is only used by yaxpeax-x86, and is only used to - // write single ASCII characters. this is wrong in the general case, but `write_char` - // here is not going to be used in the general case. - if cfg!(debug_asertions) { - panic!("InstructionTextSink::write_char would truncate output"); - } - let to_push = c as u8; - // `ptr::write` here because `underlying.add(underlying.len())` may not point to an - // initialized value, which would mean that turning that pointer into a `&mut u8` to - // store through would be UB. `ptr::write` avoids taking the mut ref. - underlying.as_mut_ptr().offset(underlying.len() as isize).write(to_push); - // we have initialized all (one) bytes that `set_len` is increasing the length to - // include. - underlying.set_len(underlying.len() + 1); - } - Ok(()) - } -} - -/// this DisplaySink impl exists to support somewhat more performant buffering of the kinds of -/// strings `yaxpeax-x86` uses in formatting instructions. -impl DisplaySink for alloc::string::String { - #[inline(always)] - fn write_fixed_size(&mut self, s: &str) -> Result<(), core::fmt::Error> { - self.reserve(s.len()); - let buf = unsafe { self.as_mut_vec() }; - let new_bytes = s.as_bytes(); - - if new_bytes.len() == 0 { - unsafe { unreachable_kinda_unchecked() } - } - - if new_bytes.len() >= 16 { - unsafe { unreachable_kinda_unchecked() } - } - - unsafe { - let dest = buf.as_mut_ptr().offset(buf.len() as isize); - - // this used to be enough to bamboozle llvm away from - // https://github.com/rust-lang/rust/issues/92993#issuecomment-2028915232 - // if `s` is not fixed size. somewhere between Rust 1.68 and Rust 1.74 this stopped - // being sufficient, so `write_fixed_size` truly should only be used for fixed size `s` - // (otherwise this is a libc memcpy call in disguise). for fixed-size strings this - // unrolls into some kind of appropriate series of `mov`. - dest.offset(0 as isize).write(new_bytes[0]); - for i in 1..new_bytes.len() { - dest.offset(i as isize).write(new_bytes[i]); - } - - buf.set_len(buf.len() + new_bytes.len()); - } - - Ok(()) - } - unsafe fn write_lt_32(&mut self, s: &str) -> Result<(), fmt::Error> { - self.reserve(s.len()); - - // SAFETY: todo - let buf = unsafe { self.as_mut_vec() }; - let new_bytes = s.as_bytes(); - - // should get DCE - if new_bytes.len() >= 32 { - unsafe { core::hint::unreachable_unchecked() } - } - - unsafe { - let dest = buf.as_mut_ptr().offset(buf.len() as isize); - let src = new_bytes.as_ptr(); - - let rem = new_bytes.len() as isize; - - // set_len early because there is no way to avoid the following asm!() writing that - // same number of bytes into buf - buf.set_len(buf.len() + new_bytes.len()); - - core::arch::asm!( - "6:", - "cmp {rem:e}, 16", - "jb 7f", - "mov {buf:r}, qword ptr [{src} + {rem} - 16]", - "mov qword ptr [{dest} + {rem} - 16], {buf:r}", - "mov {buf:r}, qword ptr [{src} + {rem} - 8]", - "mov qword ptr [{dest} + {rem} - 8], {buf:r}", - "sub {rem:e}, 16", - "jz 11f", - "7:", - "cmp {rem:e}, 8", - "jb 8f", - "mov {buf:r}, qword ptr [{src} + {rem} - 8]", - "mov qword ptr [{dest} + {rem} - 8], {buf:r}", - "sub {rem:e}, 8", - "jz 11f", - "8:", - "cmp {rem:e}, 4", - "jb 9f", - "mov {buf:e}, dword ptr [{src} + {rem} - 4]", - "mov dword ptr [{dest} + {rem} - 4], {buf:e}", - "sub {rem:e}, 4", - "jz 11f", - "9:", - "cmp {rem:e}, 2", - "jb 10f", - "mov {buf:x}, word ptr [{src} + {rem} - 2]", - "mov word ptr [{dest} + {rem} - 2], {buf:x}", - "sub {rem:e}, 2", - "jz 11f", - "10:", - "cmp {rem:e}, 1", - "jb 11f", - "mov {buf:l}, byte ptr [{src} + {rem} - 1]", - "mov byte ptr [{dest} + {rem} - 1], {buf:l}", - "11:", - src = in(reg) src, - dest = in(reg) dest, - rem = inout(reg) rem => _, - buf = out(reg) _, - options(nostack), - ); - } - /* - for i in 0..new_bytes.len() { - unsafe { - buf.as_mut_ptr().offset(buf.len() as isize).offset(i as isize).write_volatile(new_bytes[i]); - } - } - */ - - Ok(()) - } - unsafe fn write_lt_16(&mut self, s: &str) -> Result<(), fmt::Error> { - self.reserve(s.len()); - - // SAFETY: todo - let buf = unsafe { self.as_mut_vec() }; - let new_bytes = s.as_bytes(); - - // should get DCE - if new_bytes.len() >= 16 { - unsafe { core::hint::unreachable_unchecked() } - } - - unsafe { - let dest = buf.as_mut_ptr().offset(buf.len() as isize); - let src = new_bytes.as_ptr(); - - let rem = new_bytes.len() as isize; - - // set_len early because there is no way to avoid the following asm!() writing that - // same number of bytes into buf - buf.set_len(buf.len() + new_bytes.len()); - - core::arch::asm!( - "7:", - "cmp {rem:e}, 8", - "jb 8f", - "mov {buf:r}, qword ptr [{src} + {rem} - 8]", - "mov qword ptr [{dest} + {rem} - 8], {buf:r}", - "sub {rem:e}, 8", - "jz 11f", - "8:", - "cmp {rem:e}, 4", - "jb 9f", - "mov {buf:e}, dword ptr [{src} + {rem} - 4]", - "mov dword ptr [{dest} + {rem} - 4], {buf:e}", - "sub {rem:e}, 4", - "jz 11f", - "9:", - "cmp {rem:e}, 2", - "jb 10f", - "mov {buf:x}, word ptr [{src} + {rem} - 2]", - "mov word ptr [{dest} + {rem} - 2], {buf:x}", - "sub {rem:e}, 2", - "jz 11f", - "10:", - "cmp {rem:e}, 1", - "jb 11f", - "mov {buf:l}, byte ptr [{src} + {rem} - 1]", - "mov byte ptr [{dest} + {rem} - 1], {buf:l}", - "11:", - src = in(reg) src, - dest = in(reg) dest, - rem = inout(reg) rem => _, - buf = out(reg) _, - options(nostack), - ); - } - /* - for i in 0..new_bytes.len() { - unsafe { - buf.as_mut_ptr().offset(buf.len() as isize).offset(i as isize).write_volatile(new_bytes[i]); - } - } - */ - - Ok(()) - } - unsafe fn write_lt_8(&mut self, s: &str) -> Result<(), fmt::Error> { - self.reserve(s.len()); - - // SAFETY: todo - let buf = unsafe { self.as_mut_vec() }; - let new_bytes = s.as_bytes(); - - // should get DCE - if new_bytes.len() >= 8 { - unsafe { core::hint::unreachable_unchecked() } - } - - unsafe { - let dest = buf.as_mut_ptr().offset(buf.len() as isize); - let src = new_bytes.as_ptr(); - - let rem = new_bytes.len() as isize; - - // set_len early because there is no way to avoid the following asm!() writing that - // same number of bytes into buf - buf.set_len(buf.len() + new_bytes.len()); - - core::arch::asm!( - "8:", - "cmp {rem:e}, 4", - "jb 9f", - "mov {buf:e}, dword ptr [{src} + {rem} - 4]", - "mov dword ptr [{dest} + {rem} - 4], {buf:e}", - "sub {rem:e}, 4", - "jz 11f", - "9:", - "cmp {rem:e}, 2", - "jb 10f", - "mov {buf:x}, word ptr [{src} + {rem} - 2]", - "mov word ptr [{dest} + {rem} - 2], {buf:x}", - "sub {rem:e}, 2", - "jz 11f", - "10:", - "cmp {rem:e}, 1", - "jb 11f", - "mov {buf:l}, byte ptr [{src} + {rem} - 1]", - "mov byte ptr [{dest} + {rem} - 1], {buf:l}", - "11:", - src = in(reg) src, - dest = in(reg) dest, - rem = inout(reg) rem => _, - buf = out(reg) _, - options(nostack), - ); - } - /* - for i in 0..new_bytes.len() { - unsafe { - buf.as_mut_ptr().offset(buf.len() as isize).offset(i as isize).write_volatile(new_bytes[i]); - } - } - */ - - Ok(()) - } - /// write a u8 to the output as a base-16 integer. - /// - /// this is provided for optimization opportunities when the formatted integer can be written - /// directly to the sink (rather than formatted to an intermediate buffer and output as a - /// followup step) - #[inline(always)] - fn write_u8(&mut self, mut v: u8) -> Result<(), core::fmt::Error> { - if v == 0 { - return self.write_fixed_size("0"); - } - // we can fairly easily predict the size of a formatted string here with lzcnt, which also - // means we can write directly into the correct offsets of the output string. - let printed_size = ((8 - v.leading_zeros() + 3) >> 2) as usize; - - self.reserve(printed_size); - - let buf = unsafe { self.as_mut_vec() }; - let new_len = buf.len() + printed_size; - - unsafe { - buf.set_len(new_len); - } - let mut p = unsafe { buf.as_mut_ptr().offset(new_len as isize) }; - - loop { - let digit = v % 16; - let c = c_to_hex(digit as u8); - unsafe { - p = p.offset(-1); - p.write(c); - } - v = v / 16; - if v == 0 { - break; - } - } - - Ok(()) - } - /// write a u16 to the output as a base-16 integer. - /// - /// this is provided for optimization opportunities when the formatted integer can be written - /// directly to the sink (rather than formatted to an intermediate buffer and output as a - /// followup step) - #[inline(always)] - fn write_u16(&mut self, mut v: u16) -> Result<(), core::fmt::Error> { - if v == 0 { - return self.write_fixed_size("0"); - } - // we can fairly easily predict the size of a formatted string here with lzcnt, which also - // means we can write directly into the correct offsets of the output string. - let printed_size = ((16 - v.leading_zeros() + 3) >> 2) as usize; - - self.reserve(printed_size); - - let buf = unsafe { self.as_mut_vec() }; - let new_len = buf.len() + printed_size; - - unsafe { - buf.set_len(new_len); - } - let mut p = unsafe { buf.as_mut_ptr().offset(new_len as isize) }; - - loop { - let digit = v % 16; - let c = c_to_hex(digit as u8); - unsafe { - p = p.offset(-1); - p.write(c); - } - v = v / 16; - if v == 0 { - break; - } - } - - Ok(()) - } - /// write a u32 to the output as a base-16 integer. - /// - /// this is provided for optimization opportunities when the formatted integer can be written - /// directly to the sink (rather than formatted to an intermediate buffer and output as a - /// followup step) - #[inline(always)] - fn write_u32(&mut self, mut v: u32) -> Result<(), core::fmt::Error> { - if v == 0 { - return self.write_fixed_size("0"); - } - // we can fairly easily predict the size of a formatted string here with lzcnt, which also - // means we can write directly into the correct offsets of the output string. - let printed_size = ((32 - v.leading_zeros() + 3) >> 2) as usize; - - self.reserve(printed_size); - - let buf = unsafe { self.as_mut_vec() }; - let new_len = buf.len() + printed_size; - - unsafe { - buf.set_len(new_len); - } - let mut p = unsafe { buf.as_mut_ptr().offset(new_len as isize) }; - - loop { - let digit = v % 16; - let c = c_to_hex(digit as u8); - unsafe { - p = p.offset(-1); - p.write(c); - } - v = v / 16; - if v == 0 { - break; - } - } - - Ok(()) - } - /// write a u64 to the output as a base-16 integer. - /// - /// this is provided for optimization opportunities when the formatted integer can be written - /// directly to the sink (rather than formatted to an intermediate buffer and output as a - /// followup step) - #[inline(always)] - fn write_u64(&mut self, mut v: u64) -> Result<(), core::fmt::Error> { - if v == 0 { - return self.write_fixed_size("0"); - } - // we can fairly easily predict the size of a formatted string here with lzcnt, which also - // means we can write directly into the correct offsets of the output string. - let printed_size = ((64 - v.leading_zeros() + 3) >> 2) as usize; - - self.reserve(printed_size); - - let buf = unsafe { self.as_mut_vec() }; - let new_len = buf.len() + printed_size; - - unsafe { - buf.set_len(new_len); - } - let mut p = unsafe { buf.as_mut_ptr().offset(new_len as isize) }; - - loop { - let digit = v % 16; - let c = c_to_hex(digit as u8); - unsafe { - p = p.offset(-1); - p.write(c); - } - v = v / 16; - if v == 0 { - break; - } - } - - Ok(()) - } - fn span_start(&mut self, _ty: TokenType) {} - fn span_end(&mut self, _ty: TokenType) {} -} - -impl<'buf> DisplaySink for InstructionTextSink<'buf> { - #[inline(always)] - fn write_fixed_size(&mut self, s: &str) -> Result<(), core::fmt::Error> { - let buf = unsafe { self.buf.as_mut_vec() }; - let new_bytes = s.as_bytes(); - - if new_bytes.len() == 0 { - return Ok(()); - } - - if new_bytes.len() >= 16 { - unsafe { unreachable_kinda_unchecked() } - } - - unsafe { - let dest = buf.as_mut_ptr().offset(buf.len() as isize); - - // this used to be enough to bamboozle llvm away from - // https://github.com/rust-lang/rust/issues/92993#issuecomment-2028915232https://github.com/rust-lang/rust/issues/92993#issuecomment-2028915232 - // if `s` is not fixed size. somewhere between Rust 1.68 and Rust 1.74 this stopped - // being sufficient, so `write_fixed_size` truly should only be used for fixed size `s` - // (otherwise this is a libc memcpy call in disguise). for fixed-size strings this - // unrolls into some kind of appropriate series of `mov`. - dest.offset(0 as isize).write(new_bytes[0]); - for i in 1..new_bytes.len() { - dest.offset(i as isize).write(new_bytes[i]); - } - - buf.set_len(buf.len() + new_bytes.len()); - } - - Ok(()) - } - unsafe fn write_lt_32(&mut self, s: &str) -> Result<(), fmt::Error> { - // SAFETY: todo - let buf = unsafe { self.buf.as_mut_vec() }; - let new_bytes = s.as_bytes(); - - // should get DCE - if new_bytes.len() >= 32 { - unsafe { core::hint::unreachable_unchecked() } - } - - unsafe { - let dest = buf.as_mut_ptr().offset(buf.len() as isize); - let src = new_bytes.as_ptr(); - - let rem = new_bytes.len() as isize; - - // set_len early because there is no way to avoid the following asm!() writing that - // same number of bytes into buf - buf.set_len(buf.len() + new_bytes.len()); - - core::arch::asm!( - "6:", - "cmp {rem:e}, 16", - "jb 7f", - "mov {buf:r}, qword ptr [{src} + {rem} - 16]", - "mov qword ptr [{dest} + {rem} - 16], {buf:r}", - "mov {buf:r}, qword ptr [{src} + {rem} - 8]", - "mov qword ptr [{dest} + {rem} - 8], {buf:r}", - "sub {rem:e}, 16", - "jz 11f", - "7:", - "cmp {rem:e}, 8", - "jb 8f", - "mov {buf:r}, qword ptr [{src} + {rem} - 8]", - "mov qword ptr [{dest} + {rem} - 8], {buf:r}", - "sub {rem:e}, 8", - "jz 11f", - "8:", - "cmp {rem:e}, 4", - "jb 9f", - "mov {buf:e}, dword ptr [{src} + {rem} - 4]", - "mov dword ptr [{dest} + {rem} - 4], {buf:e}", - "sub {rem:e}, 4", - "jz 11f", - "9:", - "cmp {rem:e}, 2", - "jb 10f", - "mov {buf:x}, word ptr [{src} + {rem} - 2]", - "mov word ptr [{dest} + {rem} - 2], {buf:x}", - "sub {rem:e}, 2", - "jz 11f", - "10:", - "cmp {rem:e}, 1", - "jb 11f", - "mov {buf:l}, byte ptr [{src} + {rem} - 1]", - "mov byte ptr [{dest} + {rem} - 1], {buf:l}", - "11:", - src = in(reg) src, - dest = in(reg) dest, - rem = inout(reg) rem => _, - buf = out(reg) _, - options(nostack), - ); - } - /* - for i in 0..new_bytes.len() { - unsafe { - buf.as_mut_ptr().offset(buf.len() as isize).offset(i as isize).write_volatile(new_bytes[i]); - } - } - */ - - Ok(()) - } - unsafe fn write_lt_16(&mut self, s: &str) -> Result<(), fmt::Error> { - // SAFETY: todo - let buf = unsafe { self.buf.as_mut_vec() }; - let new_bytes = s.as_bytes(); - - // should get DCE - if new_bytes.len() >= 16 { - unsafe { core::hint::unreachable_unchecked() } - } - - unsafe { - let dest = buf.as_mut_ptr().offset(buf.len() as isize); - let src = new_bytes.as_ptr(); - - let rem = new_bytes.len() as isize; - - // set_len early because there is no way to avoid the following asm!() writing that - // same number of bytes into buf - buf.set_len(buf.len() + new_bytes.len()); - - core::arch::asm!( - "7:", - "cmp {rem:e}, 8", - "jb 8f", - "mov {buf:r}, qword ptr [{src} + {rem} - 8]", - "mov qword ptr [{dest} + {rem} - 8], {buf:r}", - "sub {rem:e}, 8", - "jz 11f", - "8:", - "cmp {rem:e}, 4", - "jb 9f", - "mov {buf:e}, dword ptr [{src} + {rem} - 4]", - "mov dword ptr [{dest} + {rem} - 4], {buf:e}", - "sub {rem:e}, 4", - "jz 11f", - "9:", - "cmp {rem:e}, 2", - "jb 10f", - "mov {buf:x}, word ptr [{src} + {rem} - 2]", - "mov word ptr [{dest} + {rem} - 2], {buf:x}", - "sub {rem:e}, 2", - "jz 11f", - "10:", - "cmp {rem:e}, 1", - "jb 11f", - "mov {buf:l}, byte ptr [{src} + {rem} - 1]", - "mov byte ptr [{dest} + {rem} - 1], {buf:l}", - "11:", - src = in(reg) src, - dest = in(reg) dest, - rem = inout(reg) rem => _, - buf = out(reg) _, - options(nostack), - ); - } - /* - for i in 0..new_bytes.len() { - unsafe { - buf.as_mut_ptr().offset(buf.len() as isize).offset(i as isize).write_volatile(new_bytes[i]); - } - } - */ - - Ok(()) - } - unsafe fn write_lt_8(&mut self, s: &str) -> Result<(), fmt::Error> { - // SAFETY: todo - let buf = unsafe { self.buf.as_mut_vec() }; - let new_bytes = s.as_bytes(); - - // should get DCE - if new_bytes.len() >= 8 { - unsafe { core::hint::unreachable_unchecked() } - } - - unsafe { - let dest = buf.as_mut_ptr().offset(buf.len() as isize); - let src = new_bytes.as_ptr(); - - let rem = new_bytes.len() as isize; - - // set_len early because there is no way to avoid the following asm!() writing that - // same number of bytes into buf - buf.set_len(buf.len() + new_bytes.len()); - - core::arch::asm!( - "8:", - "cmp {rem:e}, 4", - "jb 9f", - "mov {buf:e}, dword ptr [{src} + {rem} - 4]", - "mov dword ptr [{dest} + {rem} - 4], {buf:e}", - "sub {rem:e}, 4", - "jz 11f", - "9:", - "cmp {rem:e}, 2", - "jb 10f", - "mov {buf:x}, word ptr [{src} + {rem} - 2]", - "mov word ptr [{dest} + {rem} - 2], {buf:x}", - "sub {rem:e}, 2", - "jz 11f", - "10:", - "cmp {rem:e}, 1", - "jb 11f", - "mov {buf:l}, byte ptr [{src} + {rem} - 1]", - "mov byte ptr [{dest} + {rem} - 1], {buf:l}", - "11:", - src = in(reg) src, - dest = in(reg) dest, - rem = inout(reg) rem => _, - buf = out(reg) _, - options(nostack), - ); - } - /* - for i in 0..new_bytes.len() { - unsafe { - buf.as_mut_ptr().offset(buf.len() as isize).offset(i as isize).write_volatile(new_bytes[i]); - } - } - */ - - Ok(()) - } - /// write a u8 to the output as a base-16 integer. - /// - /// this is provided for optimization opportunities when the formatted integer can be written - /// directly to the sink (rather than formatted to an intermediate buffer and output as a - /// followup step) - #[inline(always)] - fn write_u8(&mut self, mut v: u8) -> Result<(), core::fmt::Error> { - if v == 0 { - return self.write_fixed_size("0"); - } - // we can fairly easily predict the size of a formatted string here with lzcnt, which also - // means we can write directly into the correct offsets of the output string. - let printed_size = ((8 - v.leading_zeros() + 3) >> 2) as usize; - - let buf = unsafe { self.buf.as_mut_vec() }; - let new_len = buf.len() + printed_size; - - unsafe { - buf.set_len(new_len); - } - let mut p = unsafe { buf.as_mut_ptr().offset(new_len as isize) }; - - loop { - let digit = v % 16; - let c = c_to_hex(digit as u8); - unsafe { - p = p.offset(-1); - p.write(c); - } - v = v / 16; - if v == 0 { - break; - } - } - - Ok(()) - } - /// write a u16 to the output as a base-16 integer. - /// - /// this is provided for optimization opportunities when the formatted integer can be written - /// directly to the sink (rather than formatted to an intermediate buffer and output as a - /// followup step) - #[inline(always)] - fn write_u16(&mut self, mut v: u16) -> Result<(), core::fmt::Error> { - if v == 0 { - return self.write_fixed_size("0"); - } - // we can fairly easily predict the size of a formatted string here with lzcnt, which also - // means we can write directly into the correct offsets of the output string. - let printed_size = ((16 - v.leading_zeros() + 3) >> 2) as usize; - - let buf = unsafe { self.buf.as_mut_vec() }; - let new_len = buf.len() + printed_size; - - unsafe { - buf.set_len(new_len); - } - let mut p = unsafe { buf.as_mut_ptr().offset(new_len as isize) }; - - loop { - let digit = v % 16; - let c = c_to_hex(digit as u8); - unsafe { - p = p.offset(-1); - p.write(c); - } - v = v / 16; - if v == 0 { - break; - } - } - - Ok(()) - } - /// write a u32 to the output as a base-16 integer. - /// - /// this is provided for optimization opportunities when the formatted integer can be written - /// directly to the sink (rather than formatted to an intermediate buffer and output as a - /// followup step) - #[inline(always)] - fn write_u32(&mut self, mut v: u32) -> Result<(), core::fmt::Error> { - if v == 0 { - return self.write_fixed_size("0"); - } - // we can fairly easily predict the size of a formatted string here with lzcnt, which also - // means we can write directly into the correct offsets of the output string. - let printed_size = ((32 - v.leading_zeros() + 3) >> 2) as usize; - - let buf = unsafe { self.buf.as_mut_vec() }; - let new_len = buf.len() + printed_size; - - unsafe { - buf.set_len(new_len); - } - let mut p = unsafe { buf.as_mut_ptr().offset(new_len as isize) }; - - loop { - let digit = v % 16; - let c = c_to_hex(digit as u8); - unsafe { - p = p.offset(-1); - p.write(c); - } - v = v / 16; - if v == 0 { - break; - } - } - - Ok(()) - } - /// write a u64 to the output as a base-16 integer. - /// - /// this is provided for optimization opportunities when the formatted integer can be written - /// directly to the sink (rather than formatted to an intermediate buffer and output as a - /// followup step) - #[inline(always)] - fn write_u64(&mut self, mut v: u64) -> Result<(), core::fmt::Error> { - if v == 0 { - return self.write_fixed_size("0"); - } - // we can fairly easily predict the size of a formatted string here with lzcnt, which also - // means we can write directly into the correct offsets of the output string. - let printed_size = ((64 - v.leading_zeros() + 3) >> 2) as usize; - - let buf = unsafe { self.buf.as_mut_vec() }; - let new_len = buf.len() + printed_size; - - unsafe { - buf.set_len(new_len); - } - let mut p = unsafe { buf.as_mut_ptr().offset(new_len as isize) }; - - loop { - let digit = v % 16; - let c = c_to_hex(digit as u8); - unsafe { - p = p.offset(-1); - p.write(c); - } - v = v / 16; - if v == 0 { - break; - } - } - - Ok(()) - } - fn span_start(&mut self, _ty: TokenType) {} - fn span_end(&mut self, _ty: TokenType) {} -} - struct ColorizingOperandVisitor<'a, T> { f: &'a mut T, } @@ -4772,6 +3711,9 @@ pub struct InstructionDisplayer<'instr> { * * so write to some Write thing i guess. bite me. i really just want to * stop thinking about how to support printing instructions... + * + * UPDATE: really wish i thought of DisplaySink back then, really wish this was bounded as T: + * DisplaySink. */ impl <'instr, T: fmt::Write, Y: YaxColors> Colorize<T, Y> for InstructionDisplayer<'instr> { fn colorize(&self, colors: &Y, out: &mut T) -> fmt::Result { @@ -4784,32 +3726,15 @@ impl <'instr, T: fmt::Write, Y: YaxColors> Colorize<T, Y> for InstructionDisplay /// No per-operand context when contextualizing an instruction! struct NoContext; -extern crate alloc; - -// TODO: find a better place to put this.... -fn c_to_hex(c: u8) -> u8 { - /* - static CHARSET: &'static [u8; 16] = b"0123456789abcdef"; - CHARSET[c as usize] - */ - // the conditional branch below is faster than a lookup, yes - if c < 10 { - b'0' + c - } else { - b'a' + c - 10 - } -} - impl Instruction { #[cfg_attr(feature="profiling", inline(never))] pub fn write_to<T: DisplaySink>(&self, out: &mut T) -> fmt::Result { contextualize_intel(self, out) -// self.display_with(DisplayStyle::Intel).contextualize(&NoColors, 0, Some(&NoContext), out) } } #[cfg_attr(feature="profiling", inline(never))] -fn contextualize_intel<T: DisplaySink>(instr: &Instruction, out: &mut T) -> fmt::Result { +pub(crate) fn contextualize_intel<T: DisplaySink>(instr: &Instruction, out: &mut T) -> fmt::Result { if instr.xacquire() { out.write_fixed_size("xacquire ")?; } @@ -4951,7 +3876,7 @@ fn contextualize_intel<T: DisplaySink>(instr: &Instruction, out: &mut T) -> fmt: Ok(()) } -fn contextualize_c<T: fmt::Write>(instr: &Instruction, _address: u64, _context: Option<&NoContext>, out: &mut T) -> fmt::Result { +pub(crate) fn contextualize_c<T: DisplaySink>(instr: &Instruction, out: &mut T) -> fmt::Result { let mut brace_count = 0; let mut prefixed = false; @@ -5286,23 +4211,22 @@ fn contextualize_c<T: fmt::Write>(instr: &Instruction, _address: u64, _context: } impl <'instr, T: fmt::Write, Y: YaxColors> ShowContextual<u64, NoContext, T, Y> for InstructionDisplayer<'instr> { - fn contextualize(&self, _colors: &Y, address: u64, context: Option<&NoContext>, out: &mut T) -> fmt::Result { + fn contextualize(&self, _colors: &Y, _address: u64, _context: Option<&NoContext>, out: &mut T) -> fmt::Result { let InstructionDisplayer { instr, style, } = self; + let mut out = crate::display::NoColorsSink { + out: out, + }; + match style { DisplayStyle::Intel => { - let mut out = NoColorsSink { - out, - }; - let out = &mut out; - - contextualize_intel(instr, out) + contextualize_intel(instr, &mut out) } DisplayStyle::C => { - contextualize_c(instr, address, context, out) + contextualize_c(instr, &mut out) } } } @@ -5311,7 +4235,7 @@ impl <'instr, T: fmt::Write, Y: YaxColors> ShowContextual<u64, NoContext, T, Y> #[cfg(feature="std")] impl <T: fmt::Write, Y: YaxColors> ShowContextual<u64, [Option<alloc::string::String>], T, Y> for Instruction { fn contextualize(&self, colors: &Y, _address: u64, context: Option<&[Option<alloc::string::String>]>, out: &mut T) -> fmt::Result { - let mut out = NoColorsSink { + let mut out = crate::display::NoColorsSink { out, }; let out = &mut out; @@ -5528,3 +4452,87 @@ impl<'a, F: DisplaySink> crate::long_mode::OperandVisitor for RelativeBranchPrin } } +/// helper to format `amd64` instructions with highest throughput and least configuration. this is +/// functionally a buffer for one x86 instruction's text. +/// +/// ### when to use this over `fmt::Display`? +/// +/// `fmt::Display` is a fair choice in most cases. in some cases, `InstructionTextBuffer` may +/// support formatting options that may be difficult to configure for a `Display` impl. +/// additionally, `InstructionTextBuffer` may be able to specialize more effectively where +/// `fmt::Display`, writing to a generic `fmt::Write`, may not. +/// +/// if your use case for `yaxpeax-x86` involves being bounded on the speed of disassembling and +/// formatting instructions, [`InstructionTextBuffer::format_inst`] has been measured as up to 11% +/// faster than an equivalent `write!(buf, "{}", inst)`. +/// +/// `InstructionTextBuffer` involves internal allocations; if your use case for `yaxpeax-x86` +/// requires allocations never occurring, it is not an appropriate tool. +/// +/// ### example +/// +/// ``` +/// use yaxpeax_x86::long_mode::InstDecoder; +/// use yaxpeax_x86::long_mode::InstructionTextBuffer; +/// +/// let bytes = &[0x33, 0xc0]; +/// let inst = InstDecoder::default().decode_slice(bytes).expect("can decode"); +/// let mut text_buf = InstructionTextBuffer::new(); +/// assert_eq!( +/// text_buf.format_inst(&inst).expect("can format"), +/// "xor eax, eax" +/// ); +/// +/// // or, getting the formatted instruction with `text_str`: +/// assert_eq!( +/// text_buf.text_str(), +/// "xor eax, eax" +/// ); +/// ``` +pub struct InstructionTextBuffer { + content: alloc::string::String, +} + +impl InstructionTextBuffer { + /// create an `InstructionTextBuffer` with default settings. `InstructionTextBuffer`'s default + /// settings format instructions identically to their corresponding `fmt::Display`. + pub fn new() -> Self { + let mut buf = alloc::string::String::new(); + // TODO: move 512 out to a MAX_INSTRUCTION_LEN const and appropriate justification (and + // fuzzing and ..) + buf.reserve(512); + Self { + content: buf, + } + } + + /// format `inst` into this buffer. returns a borrow of that same internal buffer for convenience. + /// + /// this clears and reuses an internal buffer; if an instruction had been previously formatted + /// through this buffer, it will be overwritten. + pub fn format_inst<'buf, 'instr>(&'buf mut self, display: &InstructionDisplayer<'instr>) -> Result<&'buf str, fmt::Error> { + let mut handle = self.write_handle(); + + match display.style { + DisplayStyle::Intel => { + contextualize_intel(&display.instr, &mut handle)?; + } + DisplayStyle::C => { + contextualize_c(&display.instr, &mut handle)?; + } + } + + Ok(self.text_str()) + } + + /// return a borrow of the internal buffer. if an instruction has been formatted, the + /// returned `&str` contains that instruction's buffered text. + pub fn text_str(&self) -> &str { + self.content.as_str() + } + + fn write_handle(&mut self) -> crate::display::InstructionTextSink { + self.content.clear(); + crate::display::InstructionTextSink::new(&mut self.content) + } +} diff --git a/src/long_mode/mod.rs b/src/long_mode/mod.rs index 44ed89f..418d57f 100644 --- a/src/long_mode/mod.rs +++ b/src/long_mode/mod.rs @@ -8,8 +8,6 @@ pub use crate::MemoryAccessSize; #[cfg(feature = "fmt")] pub use self::display::{DisplayStyle, InstructionDisplayer}; -#[cfg(feature = "fmt")] -pub use self::display::{InstructionFormatter, NoColorsSink, DisplaySink, TokenType}; use core::cmp::PartialEq; use crate::safer_unchecked::unreachable_kinda_unchecked as unreachable_unchecked; |