summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--build.sbt2
-rw-r--r--src/Objects.scala359
-rw-r--r--src/Scene.scala88
-rw-r--r--src/main.scala29
4 files changed, 404 insertions, 74 deletions
diff --git a/build.sbt b/build.sbt
index d52ea1b..c66a49d 100644
--- a/build.sbt
+++ b/build.sbt
@@ -1,3 +1,5 @@
name := "DIFFS LOL"
scalaSource in Compile := baseDirectory.value / "src"
+
+scalaVersion := "2.11.2"
diff --git a/src/Objects.scala b/src/Objects.scala
index b4e6435..a74ccc2 100644
--- a/src/Objects.scala
+++ b/src/Objects.scala
@@ -31,10 +31,26 @@ object Objects {
Line(m, b)
}
}
+ trait Surface {
+ // returns a t where other first intersets with this surface
+ def intersect(other: Segment): Double
+ // intersect, but returns None if intersection (t) is outside [0,1]
+ def intersectChecked(other: Segment): Option[Point]
+ // surface is some parametric function Double => Point
+ def at(t: Double): Point
+ // aka at^-1, inverse of at(t). Option, for cases that p is not on this surface.
+ def tFor(p: Point): Option[Double]
+ // reflect a ray off this surface, assuming intersection at point
+ // returns a truncated form of source stopped at intersection
+ // and a continuation after interaction
+ def scatter(source: Ray, intersection: Point): (Ray, Ray)
+ def normal(t: Double): Ray
+ def renderTo(buf: BufferedImage, scale: Double, xoff: Int, yoff: Int, color: Int): Unit
+ }
/*
* Segments are defined for t in [0, 1]
*/
- case class Segment(x: Double, y: Double, initial: Point) {
+ case class Segment(x: Double, y: Double, initial: Point) extends Surface {
def at(t: Double): Point = Point(x * t, y * t) + initial
def apply = at _
def length = Math.sqrt(x * x + y * y)
@@ -117,10 +133,344 @@ object Objects {
case (x: ArrayIndexOutOfBoundsException) => { /* well, we're not properly rendering a region so uh just ignore the failure i guess lol */ }
}
}
- def normal: Segment = {
+ def normal(t: Double): Ray = {
val normalMag = Math.sqrt(x * x + y * y)
val finalNormMult = 1.5 / normalMag
- Ray(-y * finalNormMult, x * finalNormMult, (at(0) + at(1)) / 2).toSegment
+ Ray(-y * finalNormMult, x * finalNormMult, at(t))
+ }
+ def scatter(r: Ray, firstIntersection: Point): (Ray, Ray) = {
+ def isBehind(start: Ray): Boolean = {
+ val normal = Ray(this.normal(0.5).x, this.normal(0.5).y, Point(0, 0))
+ val rebased = Ray(start.x, start.y, Point(0, 0))
+ val cosAngle = normal.dot(rebased) / (normal.mag * rebased.mag)
+ cosAngle > 0
+ }
+ if (isBehind(r)) { // as in, 'r is behind this'
+ // stop.
+ (r.endingAt(firstIntersection), Ray(0, 0, r.initial))
+ } else {
+ // reflect.
+ val minAngle = {
+ val fromStart = Raymath.angleBetween(
+ r.initial,
+ firstIntersection,
+ this.at(0)
+ )
+ val fromEnd = Raymath.angleBetween(
+ r.initial,
+ firstIntersection,
+ this.at(1)
+ )
+
+ if (Math.abs(fromStart) < Math.PI / 2) {
+ fromStart
+ } else {
+ fromEnd
+ }
+
+ fromStart
+ }
+
+ val maxAngle = Math.PI - minAngle
+
+ val baseAngle = Math.atan2(this.y, this.x)
+
+ val reflectedAngle = baseAngle + minAngle
+
+ if (minAngle < 0 || minAngle > Math.PI * 2) {
+ (r.endingAt(firstIntersection), r.endingAt(firstIntersection)) //Ray(0, 0, firstIntersection._2))
+ } else {
+ val (x, y) = (
+ Math.cos(reflectedAngle) * 3,
+ Math.sin(reflectedAngle) * 3
+ )
+
+ // Sure hope this is right...
+ (r.endingAt(firstIntersection), Ray(x, y, firstIntersection))
+ }
+ }
+ }
+ }
+ case class ParabolicLens(center: Point, rotation: Double, radius: Double, rMinor: Double) extends Surface {
+ // assume we can just use parabolic mirror equations here...
+ // 4FD = R^2, F = focal length, D = depth, R = radius
+ // so we know the intended radius and focal length, time to derive D..
+ val depth = radius * radius / (4 * rMinor)
+ val b = radius * radius / (4 * rMinor)
+ val bi = 0 // -depth
+ /*
+ * P2_x = u * cos(rotation) - (bi + u^2 * b) * sin(rotation)
+ * P2_y = u * sin(rotation) + (bi + u^2 * b) * cos(rotation)
+ */
+ def normal(t: Double): Ray =
+ normalRaw(t - 0.5)
+
+ def normalRaw(t: Double): Ray = {
+ val cosRot = Math.cos(rotation)
+ val sinRot = Math.sin(rotation)
+ // p2_x' = -sin(rotation) - 2u*b*cos(rotation)
+ // p2_y' = cos(rotation) - 2u*b*sin(rotation)
+ val p2_xp = -sinRot - 2*(t) * b * cosRot
+ val p2_yp = cosRot - 2*(t) * b * sinRot
+ Ray(p2_xp, p2_yp, this.atRaw((t)))
+ }
+ def scatter(source: Ray, intersection: Point): (Ray, Ray) = {
+ // next up...
+ val rayEnd = intersection
+ val t = tFor(intersection)
+ //println(t)
+ t.map(t => {
+ val norm = normal(t)
+ // so we rotate by the angle diff of source and normal? times refraction index?
+ val angle = -(Math.PI - Raymath.angleBetween(
+ source.initial,
+ intersection,
+ norm.at(1)
+ )) * refractionIndex
+ /*
+ * rotation matrix:
+ * cos(rot) -sin(rot)
+ * sin(rot) +cos(rot)
+ */
+ val out = Ray(source.x * Math.cos(angle) - source.y * Math.sin(angle), source.x * Math.sin(angle) + source.y * Math.cos(angle), intersection)
+ (source.endingAt(intersection), out)
+ }).getOrElse((source, Ray(source.x, source.y, source.at(1))))
+ //???
+ }
+ def tFor(p: Point): Option[Double] = {
+ val cosRot = Math.cos(rotation)
+ val sinRot = Math.sin(rotation)
+ // P2_x u: = center.x + u * cos(rotation) - (bi + u^2 * b) * sin(rotation)
+ // 0 = center.x - P2_x + u * cos(rotation) - (bi + u^2 * b) * sin(rotation)
+ // 0 = center.x - P2_x - bi * sin(rotation) + u * cos(rotation) - u^2 * b * sin(rotation)
+ // P2_y u: = center.y + u * sin(rotation) + (bi + u^2 * b) * cos(rotation)
+ // 0 = center.y - P2_y + bi * cos(rotation) + u * sin(rotation) + u^2 * b * cos(rotation)
+ val x_us = if (Math.abs(sinRot) > 0.0000001) {
+ quadradicRoots(-b * sinRot, cosRot, center.x - p.x - bi * sinRot)
+ } else {
+ Seq(-(center.x - p.x) / cosRot / 2) // why does this appear to be off by a factor of 2?
+ }
+ val y_us = if (Math.abs(cosRot) > 0.0000001) {
+ quadradicRoots(b * cosRot, sinRot, center.y - p.y + bi * cosRot)
+ } else {
+ Seq(-(center.y - p.y) / sinRot / 2)
+ }
+ //println(s"x_us: $x_us and y_us: $y_us")
+ val matches = for {
+ xu <- x_us
+ yu <- y_us
+ } yield {
+ if (Math.abs(xu - yu) < 0.00001) {
+ Some(xu)
+ } else {
+ None
+ }
+ }
+ matches.flatten match {
+ case Seq() => None
+ case Seq(u) => Some(u + 0.5)
+ case Seq(a, b) => {
+ if (Math.abs(a - b) < 0.000001) {
+ Some(a + 0.5)
+ } else {
+ throw new Exception("Too many t's for point " + p + " (" + a + ", " + b + ")")
+ }
+ }
+ case x => throw new Exception("Too many t's for point " + p + " (" + x + ")")
+ }
+ }
+ def renderTo(buf: BufferedImage, scale: Double = 1, xoff: Int = 0, yoff: Int = 0, color: Int = 0x205080): Unit = {
+ var i = 0.0
+ while (i <= 1.0) {
+ val point = this.at(i)
+ try {
+ buf.setRGB(Math.round((point.x * scale).toFloat) + xoff, Math.round((point.y * scale).toFloat) + yoff, color)
+ } catch {
+ case e: Exception => { }
+ }
+ i = i + 0.01 // 100 points
+ }
+ }
+
+ def at(t: Double): Point = atRaw(t - 0.5)
+ def atRaw(t: Double): Point = {
+ val cosRot = Math.cos(rotation)
+ val sinRot = Math.sin(rotation)
+ val t2 = t * t
+ val bit2b = bi + t2 * b
+ Point(t * cosRot * radius - bit2b * sinRot * radius, t * sinRot + bit2b * cosRot) + center
+ }
+
+ val refractionIndex = 1.52 // 1.52-1.75
+ def intersect(other: Segment): Double = {
+ /*
+ * WRONG:
+ * px = other.x * t + other.initial.x
+ * py = other.y * t + other.initial.y
+ * px = other.x
+ * P1_x = t
+ * P1_y = ai + t * a
+ * P2_x = u * cos(rotation)
+ * p2_y = (bi + u^2 * b) * sin(rotation)
+ * ai + t * a = (bi + u^2 * b) * sin(rotation)
+ * 0 = bi * sin(rotation) - ai - t * a + (t / cos(rotation))^2 * b * sin(rotation) // t == u by P1_x == P2_x
+ * 0 = bi * sin(rotation) - ai - t * a + t ^ 2 * b * sin(rotation) / cos(rotation) ^2
+ *
+ * t = a +- sqrt(a^2 - 4 (b * sin(rotation) / cos(rotation)^2 * (bi * sin(rotation) - ai))) / 2(b * sin(rotation) / cos(rotation) ^2)
+ *
+ *
+ * WRONG:
+ * definition of p2_{x,y} is wrong for rotation.
+ * px = other.x * t + other.initial.x
+ * py = other.y * t + other.initial.y
+ * P1_x = axi + t * ax
+ * P1_y = ayi + t * ay
+ * P2_x = u * cos(rotation)
+ * p2_y = (bi + u^2 * b) * sin(rotation)
+ *
+ * P1_y = P2_y
+ * ayi + t * ay = (bi + u^2 * b) * sin(rotation)
+ *
+ * P1_x = P2_x
+ * axi + t * ax = u * cos(rotation)
+ * (axi + t * ax) / cos(rotation) = u
+ *
+ * sub u for t to have one variable to solve for
+ * reminder: t is parameter for `other` aka P1
+ * ayi + t * ay = (bi + ((axi + t * ax) / cos(rotation))^2 * b) * sin(rotation)
+ * ayi + t * ay = (bi + (axi + t * ax)^2 / cos(rotation)^2 * b) * sin(rotation)
+ * ayi / sin(rotation) + t * ay / sin(rotation) = bi + (axi + t * ax)^2 / cos(rotation)^2 * b
+ * ayi / (b * sin(rotation)) + t * a / (b * sin(rotation)) = bi / b + (axi + t * ax)^2 / cos(rotation)^2
+ * ayi / (b * sin(rotation)) - bi / b + t * ay / (b * sin(rotation)) = (axi + t * ax)^2 / cos(rotation)^2
+ * (ai - bi * sin(rotation)) / (b * sin(rotation)) + t * a / (b * sin(rotation)) = (axi + t * ax)^2 / cos(rotation)^2
+ * (cos(rotation)^2 * (ayi - bi * sin(rotation))) / (b * sin(rotation)) + t * ay * cos(rotation)^2 / (b * sin(rotation)) = (axi + t * ax)^2
+ * (cos(rotation)^2 * (ayi - bi * sin(rotation))) / (b * sin(rotation)) + t * ay * cos(rotation)^2 / (b * sin(rotation)) = axi^2 + 2 * ax * axi * t + (t * ax)^2
+ * (cos(rotation)^2 * (ayi - bi * sin(rotation))) / (b * sin(rotation)) - axi^2 - 2 * ax * axi * t + t * a * cos(rotation)^2 / (b * sin(rotation)) - t^2 * ax^2 = 0
+ * (cos(rotation)^2 * (ayi - bi * sin(rotation))) / (b * sin(rotation)) - axi^2 +
+ * - 2 * ax * axi * t + t * ay * cos(rotation)^2 / (b * sin(rotation)) +
+ * - t^2 * ax^2
+ * (cos(rotation)^2 * (ayi - bi * sin(rotation))) / (b * sin(rotation)) - axi^2 +
+ * t * (ay * cos(rotation)^2 - 2 * ax * axi * b * sin(rotation)) / (b * sin(rotation)) +
+ * - t^2 * ax^2
+ *
+ * lol quadradic
+ *
+ * rotation matrix:
+ * cos(rot) -sin(rot)
+ * sin(rot) +cos(rot)
+ *
+ * RIGHT..ish:
+ * doesn't account for possibility of non-centered parabola. FIX: subtract axi and ayi by center.x and center.y.
+ * this SHOULD be what the math shows anyway...
+ * px = other.x * t + other.initial.x
+ * py = other.y * t + other.initial.y
+ * P1_x = axi + t * ax
+ * P1_y = ayi + t * ay
+ * P2_x = u * cos(rotation) * r - (bi + u^2 * b) * sin(rotation) * r
+ * P2_y = u * sin(rotation) + (bi + u^2 * b) * cos(rotation)
+ *
+ * so, intersect if P1_y(t1) == P2_y(u1) and P1_x(t1) == P2_x(u1)
+ * P1_x = P2_x:
+ * axi + t * ax = u * cos(rotation) * r - (bi + u^2 * b) * sin(rotation) * r
+ * t = (u * cos(rotation) * r - (bi + u^2 * b) * sin(rotation) * r - axi) / ax
+ * P1_y = P2_y:
+ * ayi + t * ay = u * sin(rotation) + (bi + u^2 * b) * cos(rotation)
+ * sub t to only solve for u
+ * ayi + (u * cos(rotation) * r - (bi + u^2 * b) * sin(rotation) * r - axi) / ax * ay = u * sin(rotation) + (bi + u^2 * b) * cos(rotation)
+ * ayi * ax / ay + u * cos(rotation) * r- (bi + u^2 * b) * sin(rotation) * r - axi = u * sin(rotation) * ax / ay + (bi + u^2 * b) * cos(rotation) * ax / ay
+ * ayi * ax / ay - axi + u * cos(rotation) * r - (bi + u^2 * b) * sin(rotation) * r = u * sin(rotation) * ax / ay + (bi + u^2 * b) * cos(rotation) * ax / ay
+ * ayi * ax / ay - axi + u * cos(rotation) * r - u * sin(rotation) * ax / ay - bi * sin(rotation) * r - u^2 * b * sin(rotation) * r = bi * cos(rotation) * ax / ay + u^2 * b * cos(rotation) * ax / ay
+ * ayi * ax / ay - axi - bi * cos(rotation) * ax / ay - bi * sin(rotation) * r + u * (cos(rotation) * r - sin(rotation) * ax / ay) - u^2 * b * sin(rotation) * r = u^2 * b * cos(rotation) * ax / ay
+ * (ayi - bi * cos(rotation)) * ax / ay - axi - bi * sin(rotation) * r + u * (cos(rotation) * r - sin(rotation) * ax / ay) - u^2 * b * sin(rotation) * r - u^2 * b * cos(rotation) * ax / ay = 0
+ * (ayi - bi * cos(rotation)) * ax / ay - axi - bi * sin(rotation) * r + u * (cos(rotation) * r - sin(rotation) * ax / ay) - u^2 * b * (sin(rotation) * r + cos(rotation) * ax / ay) = 0
+ * (ayi - bi * cos(rotation)) * ax / ay - axi - bi * sin(rotation) * r +
+ * u * (cos(rotation) * r - sin(rotation) * ax / ay) +
+ * - u^2 * b * (sin(rotation) * r - cos(rotation) * ax / ay) = 0
+ *
+ * but in cases like this where ax = 0...
+ * -axi - bi * sin(rotation) * r +
+ * u * cos(rotation) * r +
+ * - u^2 * b * sin(rotation) * r
+ */
+ val ax = other.x
+ val axi = other.initial.x - center.x
+ val ay = other.y
+ val ayi = other.initial.y - center.y
+ val cosRot = Math.cos(rotation)
+ val cosRot2 = cosRot * cosRot
+ val sinRot = Math.sin(rotation)
+
+ val quad_a = b * (sinRot * radius + cosRot * ax / ay)
+ val quad_b = cosRot * radius - sinRot * ax / ay
+ val quad_c = (ayi - bi * cosRot) * ax / ay - axi - bi * sinRot * radius
+
+ // potentially valid t for intersection
+ val options: Seq[Double] = if (Math.abs(quad_a) > 0.000001) {
+ quadradicRoots(quad_a, quad_b, quad_c)
+ } else {
+ // quad_a is basically 0, so...
+ // quad_b * u + quad_c == 0
+ Seq(-quad_c / quad_b)
+ }
+
+ /*
+ * Returns all u such that P2_x(u) = p2_xi
+ * p2_xi = u * cos(rotation) * r - (bi + u^2 * b) * sin(rotation) * r
+ * p2_xi + bi * sin(rotation) * r - u * cos(rotation) * r + u*2 * b * sin(rotation) * r = 0
+ */
+ def `P2_x^-1`(p2_xi: Double): Seq[Double] = quadradicRoots(b * sinRot * radius, cosRot * radius, p2_xi + bi * sinRot * radius)
+ def P1_x(t: Double): Double = other.at(t).x
+ def `P1^-1`(pt: Point): Double = {
+ val byX = (pt.x - other.initial.x) / other.x
+ val byY = (pt.y - other.initial.y) / other.y
+ if (Math.abs(other.x) <= 0.00001) {
+ byY
+ } else if (Math.abs(other.y) <= 0.00001) {
+ byX
+ } else {
+ 0
+ }
+ }
+
+ /* returns Some(t) if there is an intersection there, None if there is not */
+ // eg verifies that at other(t), u = P2_x^-1(other(t).x), that
+ val ts: Seq[Double] = options.filter(u => u >= -0.5 && u <= 0.5).flatMap(u => {
+ val ourPoint = this.atRaw(u)
+ val candidateT = `P1^-1`(ourPoint)
+ //println("candidate t: " + candidateT)
+ //println("ours: " + ourPoint + " their: " + other.at(candidateT))
+ Some(candidateT).filter(t => ourPoint.distTo(other.at(t)) < 0.00001)
+ })
+
+ ts match {
+ case Seq() => Double.NaN
+ case Seq(t) => t
+ case Seq(t1, t2) => Math.min(t1, t2)
+ }
+ }
+
+ def quadradicRoots(a: Double, b: Double, c: Double): Seq[Double] = {
+ val radical = b * b - 4 * a * c
+ val bdiv2a = -b / (2 * a)
+ if (radical < 0) {
+ Nil
+ } else if (radical == 0) {
+ Seq(bdiv2a)
+ } else {
+ val sqrtRad = Math.sqrt(radical) / (2 * a)
+ Seq(bdiv2a + sqrtRad, bdiv2a - sqrtRad)
+ }
+ }
+
+ def intersectChecked(other: Segment): Option[Point] = {
+ val u = intersect(other)
+ //println("Intersection is at u=" + u)
+ if (u >= 0 && u <= 1) {
+
+ Some(other.at(u))
+ } else {
+ None
+ }
}
}
object Segment {
@@ -147,5 +497,8 @@ object Objects {
def mag: Double = {
Math.sqrt(x * x + y * y)
}
+ def at(t: Double): Point = {
+ initial + Point(x * t, y * t)
+ }
}
}
diff --git a/src/Scene.scala b/src/Scene.scala
index 9b59f7b..8454f0a 100644
--- a/src/Scene.scala
+++ b/src/Scene.scala
@@ -6,7 +6,7 @@ import java.awt.image.BufferedImage
import javax.imageio._
import java.io.File
-case class Scene(walls: Seq[Segment]) {
+case class Scene(walls: Seq[Surface]) {
val buffer = new BufferedImage(800, 600, BufferedImage.TYPE_INT_RGB)
def render(scale: Double = 1, xoff: Int = 0, yoff: Int = 0, color: Int = 0x808000, normals: Boolean = false): Unit = {
@@ -14,7 +14,7 @@ case class Scene(walls: Seq[Segment]) {
wall.renderTo(buffer, scale, 400, 300, color = color)
}
for (wall <- walls) {
- wall.normal.renderTo(buffer, scale, 400, 300, color = 0xc00000)
+ wall.normal(0.5).toSegment.renderTo(buffer, scale, 400, 300, color = 0xc00000)
}
}
@@ -32,58 +32,14 @@ case class Scene(walls: Seq[Segment]) {
def castSingle(r: Ray): (Ray, Ray) = {
val asSeg = r.toSegment
- def reflect(firstIntersection: (Segment, Point)): (Ray, Ray) = {
- val minAngle = {
- val fromStart = Raymath.angleBetween(
- r.initial,
- firstIntersection._2,
- firstIntersection._1.at(0)
- )
- val fromEnd = Raymath.angleBetween(
- r.initial,
- firstIntersection._2,
- firstIntersection._1.at(1)
- )
-
- println("Fromstart: " + Raymath.toDegrees(fromStart))
- println("Fromend: " + Raymath.toDegrees(fromEnd))
-
- if (Math.abs(fromStart) < Math.PI / 2) {
- fromStart
- } else {
- fromEnd
- }
-
- fromStart
- }
-
- val maxAngle = Math.PI - minAngle
-
- val baseAngle = Math.atan2(firstIntersection._1.y, firstIntersection._1.x)
- println("base angle: " + Raymath.toDegrees(baseAngle))
-
- val reflectedAngle = baseAngle + minAngle
-
- if (minAngle < 0 || minAngle > Math.PI * 2) {
- println("lol")
- (r.endingAt(firstIntersection._2), r.endingAt(firstIntersection._2)) //Ray(0, 0, firstIntersection._2))
- } else {
- val (x, y) = (
- Math.cos(reflectedAngle) * 3,
- Math.sin(reflectedAngle) * 3
- )
-
- // Sure hope this is right...
- (r.endingAt(firstIntersection._2), Ray(x, y, firstIntersection._2))
- }
- }
- val intersections: Seq[(Segment, Point)] = walls.flatMap(w => {
+ val intersections: Seq[(Surface, Point)] = walls.flatMap(w => {
w.intersectChecked(asSeg)
.map(x => (w, x))
})
- .filter { case (w: Segment, x: Point) => asSeg.tFor(x).map(_ > 0.0000001).getOrElse(false) }
+ .filter { case (w: Surface, x: Point) => asSeg.tFor(x).map(_ > 0.0000001).getOrElse(false) }
- def isBehind(start: Segment, wall: Segment): Boolean = {
+ /*
+ def isBehind(start: Segment, wall: Surface): Boolean = {
val normal = Ray(-wall.y, wall.x, Point(0, 0))
val rebased = Ray(start.x, start.y, Point(0, 0))
val cosAngle = normal.dot(rebased) / (normal.mag * rebased.mag)
@@ -101,27 +57,39 @@ case class Scene(walls: Seq[Segment]) {
val otherT = i._1.tFor(i._2)
otherT.map(t => t >= 0 && t <= 1 && isBehind(asSeg, i._1)).getOrElse(false)
})
+ */
- def fnMin(x: (Segment, Point), y: (Segment, Point)) = if (asSeg.tFor(x._2).get < asSeg.tFor(y._2).get) x else y
- val firstStop: Option[(Segment, Point)] = stoppedIntersections.reduceOption(fnMin(_, _))
- val firstReflect: Option[(Segment, Point)] = continuedIntersections.reduceOption(fnMin(_, _))
+ def fnMin(x: (Surface, Point), y: (Surface, Point)) = if (asSeg.tFor(x._2).get < asSeg.tFor(y._2).get) x else y
+ /*
+ val firstStop: Option[(Surface, Point)] = stoppedIntersections.reduceOption(fnMin(_, _))
+ val firstReflect: Option[(Surface, Point)] = continuedIntersections.reduceOption(fnMin(_, _))
(firstStop, firstReflect) match {
case (None, None) =>
(r, Ray(r.x, r.y, r.toSegment.at(1)))
case (Some(stop), None) =>
(r.endingAt(stop._2), Ray(0, 0, r.initial))
- case (None, Some(cont)) => reflect(cont)/* reflect */
+ case (None, Some(cont)) => cont._1.scatter(r, cont._2) //reflect(cont)// reflect
case (Some(stop), Some(cont)) => {
if (fnMin(stop, cont) == stop) {
(r.endingAt(stop._2), Ray(0, 0, r.initial))
// stop
} else {
- reflect(cont)
+ cont._1.scatter(r, cont._2)
+ //reflect(cont)
// reflect
}
}
}
+ */
+ val firstInteraction = intersections
+// .map(x => {println("maybe " + x._1); x})
+ .filter(i => i._1.tFor(i._2).map(t => t >= 0 && t <= 1).getOrElse(true))
+ .reduceOption(fnMin(_, _))
+ firstInteraction match {
+ case None => (r, Ray(r.x, r.y, r.toSegment.at(1)))
+ case Some(cont) => cont._1.scatter(r, cont._2)
+ }
}
}
@@ -149,4 +117,14 @@ object Scene {
def rotate(walls: Seq[Segment], angle: Double) =
walls.map(_.rotate(angle))
+
+ def rays(number: Int, spacing: Double, centerpoint: Point, direction: Point): Seq[Ray] = {
+ (0 until number).map { i =>
+ val x = (i.toDouble - number.toDouble / 2) * spacing
+ val y = 0
+ val dx = direction.x
+ val dy = direction.y
+ Ray(dx, dy, Point(x, y) + centerpoint)
+ }
+ }
}
diff --git a/src/main.scala b/src/main.scala
index 8883cc7..a0ea4cd 100644
--- a/src/main.scala
+++ b/src/main.scala
@@ -4,10 +4,12 @@ import Objects._
object main extends App {
// val mirror = Scene(Scene.generateMirror(10, 60, Raymath.toRadians(180), Point(0, 0), 0))
val offset = Point(0.0, -9)
- val mirror = Scene(Scene.generateParabola(-0.9, -0.0075, 16, 0, 42, Point(0, 14), 0) :+ Segment.fromPoints(
- Point(-0.5, 0.5) + offset,
- Point(0.5, -0.5) + offset
- ))
+// val mirror = Scene(Scene.generateParabola(-0.9, -0.0075, 16, 0, 142, Point(0, 14), 0) :+ Segment.fromPoints(
+// Point(-0.5, 0.5) + offset,
+// Point(0.5, -0.5) + offset
+// ) :+ ParabolicLens(Point(4, -9), -Math.PI / 2, 1, 0.2) :+ ParabolicLens(Point(5, -1), 0, 1, 0.4))
+//
+ val mirror = Scene(Seq(ParabolicLens(Point(0, 1), 0.00, 2, 0.2)))
// val mirror = Scene(Seq(Segment(4, -4, Point(-2, 2))))
//val ray = mirror.cast(Ray(0, 2, Point(0.8, -1)), 4)
mirror.render(scale = 20, color = 0xc0c0c0, normals = true)
@@ -21,20 +23,15 @@ object main extends App {
}
}
*/
- def rays(number: Int, spacing: Double, centerpoint: Point, direction: Point): Seq[Ray] = {
- (0 until number).map { i =>
- val x = (i.toDouble - number.toDouble / 2) * spacing
- val y = 0
- val dx = direction.x
-// * Math.cos((i.toDouble - number.toDouble) / (number.toDouble / 4))
- val dy = direction.y
- Ray(dx, dy, Point(x, y) + centerpoint)
- }
- }
- rays(63, 0.165, Point(-0, -10), Point(0.0, 2))
- .flatMap(x => mirror.cast(x, 30))
+/*
+ rays(63, 0.165, Point(-0, -10), Point(0.0, 4))
+ .flatMap(x => mirror.cast(x, 63))
.map(_.renderTo(mirror.buffer, 20, 400, 300))
//println(ray)
+*/
+ Scene.rays(4, 0.165, Point(0, -10), Point(0.0, 40))
+ .flatMap(x => mirror.cast(x, 2))
+ .map(_.renderTo(mirror.buffer, 20, 400, 300))
mirror.save()
}