1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
package net.iximeow.raytrace
import java.awt.image.BufferedImage
object Objects {
/*
* 3d nah
case class Point(x: Double, y: Double, z: Double)
case class Plane(pitch: Double, roll: Double, altitude: Double)
case class BoundedPlane(pitch: Double, roll: Double, center: Point, h: Point, w: Point)
*/
case class Point(x: Double, y: Double) {
def +(other: Point): Point = Point(x + other.x, y + other.y)
def -(other: Point): Point = Point(x - other.x, y - other.y)
def /(scale: Double): Point = Point(x / scale, y / scale)
def *(scale: Double): Point = Point(x * scale, y * scale)
def magnitude: Double = distTo(Point.Zero)
def distTo(other: Point) = Math.sqrt(sqDistTo(other))
def sqDistTo(other: Point) = (other.x - x) * (other.x - x) + (other.y - y) * (other.y - y)
def dot(other: Point): Double = x * other.x + y * other.y
}
object Point {
val Zero = Point(0, 0)
}
case class Line(m: Double, b: Double)
object Line {
def fromPoints(p1: Point, p2: Point): Line = {
val m = (p2.y - p1.y) / (p2.x - p1.x)
val b = p1.y - m*p1.x
Line(m, b)
}
}
trait Surface {
// returns a t where other first intersets with this surface
def intersect(other: Segment): Double
// intersect, but returns None if intersection (t) is outside [0,1]
def intersectChecked(other: Segment): Option[Point]
// surface is some parametric function Double => Point
def at(t: Double): Point
// aka at^-1, inverse of at(t). Option, for cases that p is not on this surface.
def tFor(p: Point): Option[Double]
// reflect a ray off this surface, assuming intersection at point
// returns a truncated form of source stopped at intersection
// and a continuation after interaction
def scatter(source: Ray, intersection: Point): (Ray, Ray)
def normal(t: Double): Ray
def renderTo(buf: BufferedImage, scale: Double, xoff: Int, yoff: Int, color: Int): Unit
}
/*
* Segments are defined for t in [0, 1]
*/
case class Segment(x: Double, y: Double, initial: Point) extends Surface {
def at(t: Double): Point = Point(x * t, y * t) + initial
def apply = at _
def length = Math.sqrt(x * x + y * y)
def intersect(other: Segment): Double = {
/*
* P1 = ai + t * a
* P2 = bi + u * b
* P1 == P2, so
* ai + t * a = bi + u * b
* ...
* ai.x + t * a.x = bi.x + u * b.x
* ai.y + t * a.y = bi.y + u * b.y
* t = (bi.x + u * b.x - ai.x) / a.x
* ai.y + a.y * (bi.x + u * b.x - ai.x) / a.x = bi.y + u * b.y
* ai.y + a.y * bi.x / a.x + u * b.x * a.y / a.x - ai.x * a.y / a.x = bi.y + u * b.y
* ai.y - bi.y + (a.y / a.x) (bi.x - ai.x) = u * b.y - u * b.x * a.y / a.x
* ai.y - bi.y + (a.y / a.x) (bi.x - ai.x) / (b.y - b.x * a.y / a.x) = u
*
* (a.x * (ai.y - bi.y) + a.y * (bi.x - ai.x)) / (b.y - b.x * a.y)
*/
val u = (
x * (initial.y - other.initial.y) +
y * (other.initial.x - initial.x)
) / (
other.y * x - other.x * y
)
u
}
def intersectChecked(other: Segment): Option[Point] = {
val u = intersect(other)
if (u >= 0 && u <= 1) {
//println("Intersection is at u=" + u)
Some(other.at(u))
} else {
None
}
}
def tFor(p: Point): Option[Double] = {
(x, y) match {
case (0, _) => Some((p.y - initial.y) / y)
case (_, 0) => Some((p.x - initial.x) / x)
case (_, _) => {
val xT = (p.x - initial.x) / x
val yT = (p.y - initial.y) / y
if (Math.abs(xT - yT) < 0.000001) {
Some(xT)
} else {
None
}
}
}
}
def rotate(angle: Double, about: Point = Point(0, 0)): Segment = {
val start = this.at(0)
val end = this.at(1)
val newStart = {
val offset = start - about
val m = offset.magnitude
val newAngle = Math.atan2(offset.y, offset.x) + angle
Point(Math.cos(newAngle) * m, Math.sin(newAngle) * m) + about
}
val newEnd = {
val offset = end - about
val m = offset.magnitude
val newAngle = Math.atan2(offset.y, offset.x) + angle
Point(Math.cos(newAngle) * m, Math.sin(newAngle) * m) + about
}
Segment.fromPoints(newStart, newEnd)
}
def renderTo(buf: BufferedImage, scale: Double = 1, xoff: Int = 0, yoff: Int = 0, color: Int = 0x808000): Unit = {
try {
for (i <- (0 to 100)) {
val point = this.at(i / 100.0)
buf.setRGB(Math.round((point.x * scale).toFloat) + xoff, Math.round((point.y * scale).toFloat) + yoff, color)
}
} catch {
case (x: ArrayIndexOutOfBoundsException) => { /* well, we're not properly rendering a region so uh just ignore the failure i guess lol */ }
}
}
def normal(t: Double): Ray = {
val normalMag = Math.sqrt(x * x + y * y)
val finalNormMult = 1.5 / normalMag
Ray(-y * finalNormMult, x * finalNormMult, at(t))
}
def scatter(r: Ray, firstIntersection: Point): (Ray, Ray) = {
def isBehind(start: Ray): Boolean = {
val normal = Ray(this.normal(0.5).x, this.normal(0.5).y, Point(0, 0))
val rebased = Ray(start.x, start.y, Point(0, 0))
val cosAngle = normal.dot(rebased) / (normal.mag * rebased.mag)
cosAngle > 0
}
if (isBehind(r)) { // as in, 'r is behind this'
// stop.
(r.endingAt(firstIntersection), Ray(0, 0, r.initial))
} else {
// reflect.
val minAngle = {
val fromStart = Raymath.angleBetween(
r.initial,
firstIntersection,
this.at(0)
)
val fromEnd = Raymath.angleBetween(
r.initial,
firstIntersection,
this.at(1)
)
if (Math.abs(fromStart) < Math.PI / 2) {
fromStart
} else {
fromEnd
}
fromStart
}
val maxAngle = Math.PI - minAngle
val baseAngle = Math.atan2(this.y, this.x)
val reflectedAngle = baseAngle + minAngle
if (minAngle < 0 || minAngle > Math.PI * 2) {
(r.endingAt(firstIntersection), r.endingAt(firstIntersection)) //Ray(0, 0, firstIntersection._2))
} else {
val (x, y) = (
Math.cos(reflectedAngle) * 3,
Math.sin(reflectedAngle) * 3
)
// Sure hope this is right...
(r.endingAt(firstIntersection), Ray(x, y, firstIntersection))
}
}
}
}
case class ParabolicLens(center: Point, rotation: Double, radius: Double, rMinor: Double) extends Surface {
// assume we can just use parabolic mirror equations here...
// 4FD = R^2, F = focal length, D = depth, R = radius
// so we know the intended radius and focal length, time to derive D..
val depth = radius * radius / (4 * rMinor)
val b = radius * radius / (4 * rMinor)
val bi = 0 // -depth
/*
* P2_x = u * cos(rotation) - (bi + u^2 * b) * sin(rotation)
* P2_y = u * sin(rotation) + (bi + u^2 * b) * cos(rotation)
*/
def normal(t: Double): Ray =
normalRaw(t - 0.5)
def normalRaw(t: Double): Ray = {
val cosRot = Math.cos(rotation)
val sinRot = Math.sin(rotation)
// p2_x' = -sin(rotation) - 2u*b*cos(rotation)
// p2_y' = cos(rotation) - 2u*b*sin(rotation)
val p2_xp = -sinRot - 2*(t) * b * cosRot
val p2_yp = cosRot - 2*(t) * b * sinRot
Ray(p2_xp, p2_yp, this.atRaw((t)))
}
def scatter(source: Ray, intersection: Point): (Ray, Ray) = {
// next up...
val rayEnd = intersection
val t = tFor(intersection)
//println(t)
t.map(t => {
val norm = normal(t)
// so we rotate by the angle diff of source and normal? times refraction index?
val angle = -(Math.PI - Raymath.angleBetween(
source.initial,
intersection,
norm.at(1)
)) * refractionIndex
/*
* rotation matrix:
* cos(rot) -sin(rot)
* sin(rot) +cos(rot)
*/
val out = Ray(source.x * Math.cos(angle) - source.y * Math.sin(angle), source.x * Math.sin(angle) + source.y * Math.cos(angle), intersection)
(source.endingAt(intersection), out)
}).getOrElse((source, Ray(source.x, source.y, source.at(1))))
//???
}
def tFor(p: Point): Option[Double] = {
val cosRot = Math.cos(rotation)
val sinRot = Math.sin(rotation)
// P2_x u: = center.x + u * cos(rotation) - (bi + u^2 * b) * sin(rotation)
// 0 = center.x - P2_x + u * cos(rotation) - (bi + u^2 * b) * sin(rotation)
// 0 = center.x - P2_x - bi * sin(rotation) + u * cos(rotation) - u^2 * b * sin(rotation)
// P2_y u: = center.y + u * sin(rotation) + (bi + u^2 * b) * cos(rotation)
// 0 = center.y - P2_y + bi * cos(rotation) + u * sin(rotation) + u^2 * b * cos(rotation)
val x_us = if (Math.abs(sinRot) > 0.0000001) {
quadradicRoots(-b * sinRot, cosRot, center.x - p.x - bi * sinRot)
} else {
Seq(-(center.x - p.x) / cosRot / 2) // why does this appear to be off by a factor of 2?
}
val y_us = if (Math.abs(cosRot) > 0.0000001) {
quadradicRoots(b * cosRot, sinRot, center.y - p.y + bi * cosRot)
} else {
Seq(-(center.y - p.y) / sinRot / 2)
}
//println(s"x_us: $x_us and y_us: $y_us")
val matches = for {
xu <- x_us
yu <- y_us
} yield {
if (Math.abs(xu - yu) < 0.00001) {
Some(xu)
} else {
None
}
}
matches.flatten match {
case Seq() => None
case Seq(u) => Some(u + 0.5)
case Seq(a, b) => {
if (Math.abs(a - b) < 0.000001) {
Some(a + 0.5)
} else {
throw new Exception("Too many t's for point " + p + " (" + a + ", " + b + ")")
}
}
case x => throw new Exception("Too many t's for point " + p + " (" + x + ")")
}
}
def renderTo(buf: BufferedImage, scale: Double = 1, xoff: Int = 0, yoff: Int = 0, color: Int = 0x205080): Unit = {
var i = 0.0
while (i <= 1.0) {
val point = this.at(i)
try {
buf.setRGB(Math.round((point.x * scale).toFloat) + xoff, Math.round((point.y * scale).toFloat) + yoff, color)
} catch {
case e: Exception => { }
}
i = i + 0.01 // 100 points
}
}
def at(t: Double): Point = atRaw(t - 0.5)
def atRaw(t: Double): Point = {
val cosRot = Math.cos(rotation)
val sinRot = Math.sin(rotation)
val t2 = t * t
val bit2b = bi + t2 * b
Point(t * cosRot * radius - bit2b * sinRot * radius, t * sinRot + bit2b * cosRot) + center
}
val refractionIndex = 1.52 // 1.52-1.75
def intersect(other: Segment): Double = {
/*
* WRONG:
* px = other.x * t + other.initial.x
* py = other.y * t + other.initial.y
* px = other.x
* P1_x = t
* P1_y = ai + t * a
* P2_x = u * cos(rotation)
* p2_y = (bi + u^2 * b) * sin(rotation)
* ai + t * a = (bi + u^2 * b) * sin(rotation)
* 0 = bi * sin(rotation) - ai - t * a + (t / cos(rotation))^2 * b * sin(rotation) // t == u by P1_x == P2_x
* 0 = bi * sin(rotation) - ai - t * a + t ^ 2 * b * sin(rotation) / cos(rotation) ^2
*
* t = a +- sqrt(a^2 - 4 (b * sin(rotation) / cos(rotation)^2 * (bi * sin(rotation) - ai))) / 2(b * sin(rotation) / cos(rotation) ^2)
*
*
* WRONG:
* definition of p2_{x,y} is wrong for rotation.
* px = other.x * t + other.initial.x
* py = other.y * t + other.initial.y
* P1_x = axi + t * ax
* P1_y = ayi + t * ay
* P2_x = u * cos(rotation)
* p2_y = (bi + u^2 * b) * sin(rotation)
*
* P1_y = P2_y
* ayi + t * ay = (bi + u^2 * b) * sin(rotation)
*
* P1_x = P2_x
* axi + t * ax = u * cos(rotation)
* (axi + t * ax) / cos(rotation) = u
*
* sub u for t to have one variable to solve for
* reminder: t is parameter for `other` aka P1
* ayi + t * ay = (bi + ((axi + t * ax) / cos(rotation))^2 * b) * sin(rotation)
* ayi + t * ay = (bi + (axi + t * ax)^2 / cos(rotation)^2 * b) * sin(rotation)
* ayi / sin(rotation) + t * ay / sin(rotation) = bi + (axi + t * ax)^2 / cos(rotation)^2 * b
* ayi / (b * sin(rotation)) + t * a / (b * sin(rotation)) = bi / b + (axi + t * ax)^2 / cos(rotation)^2
* ayi / (b * sin(rotation)) - bi / b + t * ay / (b * sin(rotation)) = (axi + t * ax)^2 / cos(rotation)^2
* (ai - bi * sin(rotation)) / (b * sin(rotation)) + t * a / (b * sin(rotation)) = (axi + t * ax)^2 / cos(rotation)^2
* (cos(rotation)^2 * (ayi - bi * sin(rotation))) / (b * sin(rotation)) + t * ay * cos(rotation)^2 / (b * sin(rotation)) = (axi + t * ax)^2
* (cos(rotation)^2 * (ayi - bi * sin(rotation))) / (b * sin(rotation)) + t * ay * cos(rotation)^2 / (b * sin(rotation)) = axi^2 + 2 * ax * axi * t + (t * ax)^2
* (cos(rotation)^2 * (ayi - bi * sin(rotation))) / (b * sin(rotation)) - axi^2 - 2 * ax * axi * t + t * a * cos(rotation)^2 / (b * sin(rotation)) - t^2 * ax^2 = 0
* (cos(rotation)^2 * (ayi - bi * sin(rotation))) / (b * sin(rotation)) - axi^2 +
* - 2 * ax * axi * t + t * ay * cos(rotation)^2 / (b * sin(rotation)) +
* - t^2 * ax^2
* (cos(rotation)^2 * (ayi - bi * sin(rotation))) / (b * sin(rotation)) - axi^2 +
* t * (ay * cos(rotation)^2 - 2 * ax * axi * b * sin(rotation)) / (b * sin(rotation)) +
* - t^2 * ax^2
*
* lol quadradic
*
* rotation matrix:
* cos(rot) -sin(rot)
* sin(rot) +cos(rot)
*
* RIGHT..ish:
* doesn't account for possibility of non-centered parabola. FIX: subtract axi and ayi by center.x and center.y.
* this SHOULD be what the math shows anyway...
* px = other.x * t + other.initial.x
* py = other.y * t + other.initial.y
* P1_x = axi + t * ax
* P1_y = ayi + t * ay
* P2_x = u * cos(rotation) * r - (bi + u^2 * b) * sin(rotation) * r
* P2_y = u * sin(rotation) + (bi + u^2 * b) * cos(rotation)
*
* so, intersect if P1_y(t1) == P2_y(u1) and P1_x(t1) == P2_x(u1)
* P1_x = P2_x:
* axi + t * ax = u * cos(rotation) * r - (bi + u^2 * b) * sin(rotation) * r
* t = (u * cos(rotation) * r - (bi + u^2 * b) * sin(rotation) * r - axi) / ax
* P1_y = P2_y:
* ayi + t * ay = u * sin(rotation) + (bi + u^2 * b) * cos(rotation)
* sub t to only solve for u
* ayi + (u * cos(rotation) * r - (bi + u^2 * b) * sin(rotation) * r - axi) / ax * ay = u * sin(rotation) + (bi + u^2 * b) * cos(rotation)
* ayi * ax / ay + u * cos(rotation) * r- (bi + u^2 * b) * sin(rotation) * r - axi = u * sin(rotation) * ax / ay + (bi + u^2 * b) * cos(rotation) * ax / ay
* ayi * ax / ay - axi + u * cos(rotation) * r - (bi + u^2 * b) * sin(rotation) * r = u * sin(rotation) * ax / ay + (bi + u^2 * b) * cos(rotation) * ax / ay
* ayi * ax / ay - axi + u * cos(rotation) * r - u * sin(rotation) * ax / ay - bi * sin(rotation) * r - u^2 * b * sin(rotation) * r = bi * cos(rotation) * ax / ay + u^2 * b * cos(rotation) * ax / ay
* ayi * ax / ay - axi - bi * cos(rotation) * ax / ay - bi * sin(rotation) * r + u * (cos(rotation) * r - sin(rotation) * ax / ay) - u^2 * b * sin(rotation) * r = u^2 * b * cos(rotation) * ax / ay
* (ayi - bi * cos(rotation)) * ax / ay - axi - bi * sin(rotation) * r + u * (cos(rotation) * r - sin(rotation) * ax / ay) - u^2 * b * sin(rotation) * r - u^2 * b * cos(rotation) * ax / ay = 0
* (ayi - bi * cos(rotation)) * ax / ay - axi - bi * sin(rotation) * r + u * (cos(rotation) * r - sin(rotation) * ax / ay) - u^2 * b * (sin(rotation) * r + cos(rotation) * ax / ay) = 0
* (ayi - bi * cos(rotation)) * ax / ay - axi - bi * sin(rotation) * r +
* u * (cos(rotation) * r - sin(rotation) * ax / ay) +
* - u^2 * b * (sin(rotation) * r - cos(rotation) * ax / ay) = 0
*
* but in cases like this where ax = 0...
* -axi - bi * sin(rotation) * r +
* u * cos(rotation) * r +
* - u^2 * b * sin(rotation) * r
*/
val ax = other.x
val axi = other.initial.x - center.x
val ay = other.y
val ayi = other.initial.y - center.y
val cosRot = Math.cos(rotation)
val cosRot2 = cosRot * cosRot
val sinRot = Math.sin(rotation)
val quad_a = b * (sinRot * radius + cosRot * ax / ay)
val quad_b = cosRot * radius - sinRot * ax / ay
val quad_c = (ayi - bi * cosRot) * ax / ay - axi - bi * sinRot * radius
// potentially valid t for intersection
val options: Seq[Double] = if (Math.abs(quad_a) > 0.000001) {
quadradicRoots(quad_a, quad_b, quad_c)
} else {
// quad_a is basically 0, so...
// quad_b * u + quad_c == 0
Seq(-quad_c / quad_b)
}
/*
* Returns all u such that P2_x(u) = p2_xi
* p2_xi = u * cos(rotation) * r - (bi + u^2 * b) * sin(rotation) * r
* p2_xi + bi * sin(rotation) * r - u * cos(rotation) * r + u*2 * b * sin(rotation) * r = 0
*/
def `P2_x^-1`(p2_xi: Double): Seq[Double] = quadradicRoots(b * sinRot * radius, cosRot * radius, p2_xi + bi * sinRot * radius)
def P1_x(t: Double): Double = other.at(t).x
def `P1^-1`(pt: Point): Double = {
val byX = (pt.x - other.initial.x) / other.x
val byY = (pt.y - other.initial.y) / other.y
if (Math.abs(other.x) <= 0.00001) {
byY
} else if (Math.abs(other.y) <= 0.00001) {
byX
} else {
0
}
}
/* returns Some(t) if there is an intersection there, None if there is not */
// eg verifies that at other(t), u = P2_x^-1(other(t).x), that
val ts: Seq[Double] = options.filter(u => u >= -0.5 && u <= 0.5).flatMap(u => {
val ourPoint = this.atRaw(u)
val candidateT = `P1^-1`(ourPoint)
//println("candidate t: " + candidateT)
//println("ours: " + ourPoint + " their: " + other.at(candidateT))
Some(candidateT).filter(t => ourPoint.distTo(other.at(t)) < 0.00001)
})
ts match {
case Seq() => Double.NaN
case Seq(t) => t
case Seq(t1, t2) => Math.min(t1, t2)
}
}
def quadradicRoots(a: Double, b: Double, c: Double): Seq[Double] = {
val radical = b * b - 4 * a * c
val bdiv2a = -b / (2 * a)
if (radical < 0) {
Nil
} else if (radical == 0) {
Seq(bdiv2a)
} else {
val sqrtRad = Math.sqrt(radical) / (2 * a)
Seq(bdiv2a + sqrtRad, bdiv2a - sqrtRad)
}
}
def intersectChecked(other: Segment): Option[Point] = {
val u = intersect(other)
//println("Intersection is at u=" + u)
if (u >= 0 && u <= 1) {
Some(other.at(u))
} else {
None
}
}
}
object Segment {
def fromPoints(p1: Point, p2: Point): Segment = {
val (x0, y0) = (p2.x - p1.x, p2.y - p1.y)
Segment(x0, y0, p1)
}
def fromPointWithAngle(p: Point, angle: Double): Segment = {
val (x0, y0) = (Math.cos(angle), Math.sin(angle))
Segment(x0, y0, p)
}
}
case class Ray(x: Double, y: Double, initial: Point) {
def toSegment: Segment = Segment(x, y, initial)
def endingAt(p: Point): Ray = {
val intersectAt = this.toSegment.tFor(p)
intersectAt.map(t =>
Ray(x * t, y * t, initial)
).getOrElse(this)
}
def dot(other: Ray): Double = {
x * other.x + y * other.y
}
def mag: Double = {
Math.sqrt(x * x + y * y)
}
def at(t: Double): Point = {
initial + Point(x * t, y * t)
}
}
}
|