1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
package net.iximeow.raytrace
import Objects._
import java.awt.image.BufferedImage
import javax.imageio._
import java.io.File
case class Scene(walls: Seq[Surface]) {
val buffer = new BufferedImage(800, 600, BufferedImage.TYPE_INT_RGB)
def render(scale: Double = 1, xoff: Int = 0, yoff: Int = 0, color: Int = 0x808000, normals: Boolean = false): Unit = {
for (wall <- walls) {
wall.renderTo(buffer, scale, 400, 300, color = color)
}
for (wall <- walls) {
wall.normal(0.5).toSegment.renderTo(buffer, scale, 400, 300, color = 0xc00000)
}
}
def save(path: String = "render.png"): Unit = {
ImageIO.write(buffer, "png", new File(path))
}
def cast(r: Ray, steps: Int): Seq[Segment] = {
(0 until steps).foldLeft(Seq.empty[Segment] -> r) { case (p: (Seq[Segment], Ray), i: Int) => {
val (prevRay, nextRay) = castSingle(p._2)
((p._1 :+ prevRay.toSegment) -> nextRay): (Seq[Segment], Ray)
}}._1
}
def castSingle(r: Ray): (Ray, Ray) = {
val asSeg = r.toSegment
val intersections: Seq[(Surface, Point)] = walls.flatMap(w => {
w.intersectChecked(asSeg)
.map(x => (w, x))
})
.filter { case (w: Surface, x: Point) => asSeg.tFor(x).map(_ > 0.0000001).getOrElse(false) }
/*
def isBehind(start: Segment, wall: Surface): Boolean = {
val normal = Ray(-wall.y, wall.x, Point(0, 0))
val rebased = Ray(start.x, start.y, Point(0, 0))
val cosAngle = normal.dot(rebased) / (normal.mag * rebased.mag)
cosAngle > 0
}
val continuedIntersections = intersections
.filter(i => {
val otherT = i._1.tFor(i._2)
otherT.map(t => t >= 0 && t <= 1).getOrElse(true)
})
val stoppedIntersections = intersections
.filter(i => {
val otherT = i._1.tFor(i._2)
otherT.map(t => t >= 0 && t <= 1 && isBehind(asSeg, i._1)).getOrElse(false)
})
*/
def fnMin(x: (Surface, Point), y: (Surface, Point)) = if (asSeg.tFor(x._2).get < asSeg.tFor(y._2).get) x else y
/*
val firstStop: Option[(Surface, Point)] = stoppedIntersections.reduceOption(fnMin(_, _))
val firstReflect: Option[(Surface, Point)] = continuedIntersections.reduceOption(fnMin(_, _))
(firstStop, firstReflect) match {
case (None, None) =>
(r, Ray(r.x, r.y, r.toSegment.at(1)))
case (Some(stop), None) =>
(r.endingAt(stop._2), Ray(0, 0, r.initial))
case (None, Some(cont)) => cont._1.scatter(r, cont._2) //reflect(cont)// reflect
case (Some(stop), Some(cont)) => {
if (fnMin(stop, cont) == stop) {
(r.endingAt(stop._2), Ray(0, 0, r.initial))
// stop
} else {
cont._1.scatter(r, cont._2)
//reflect(cont)
// reflect
}
}
}
*/
val firstInteraction = intersections
// .map(x => {println("maybe " + x._1); x})
.filter(i => i._1.tFor(i._2).map(t => t >= 0 && t <= 1).getOrElse(true))
.reduceOption(fnMin(_, _))
firstInteraction match {
case None => (r, Ray(r.x, r.y, r.toSegment.at(1)))
case Some(cont) => cont._1.scatter(r, cont._2)
}
}
}
object Scene {
def generateMirror(r: Double, segments: Int, arcSize: Double, at: Point, rotated: Double): Seq[Segment] = {
val sizePerSegment = arcSize / segments
val points = (0 to segments) map { i =>
val angle = i * sizePerSegment + rotated
at + Point(Math.cos(angle) * r, Math.sin(angle) * r)
}
points.sliding(2).map { case Seq(start, end) =>
Segment.fromPoints(start, end)
}.toSeq
}
def generateParabola(a: Double, b: Double, w: Double, w_i: Double, segments: Int, at: Point, rotated: Double): Seq[Segment] = {
val points = (-segments / 2 to segments / 2) map { i =>
val w_curr = (i / segments.toDouble) * w + w_i
at + Point(a * w_curr, b * w_curr * w_curr)
}
points.sliding(2).map { case Seq(start, end) =>
Segment.fromPoints(start, end)
}.toSeq
}
def rotate(walls: Seq[Segment], angle: Double) =
walls.map(_.rotate(angle))
def rays(number: Int, spacing: Double, centerpoint: Point, direction: Point): Seq[Ray] = {
(0 until number).map { i =>
val x = (i.toDouble - number.toDouble / 2) * spacing
val y = 0
val dx = direction.x
val dy = direction.y
Ray(dx, dy, Point(x, y) + centerpoint)
}
}
}
|